import os import numpy as np import trimesh from .utils.libmesh import check_mesh_contains def get_occ_gt( in_path=None, vertices=None, faces=None, pts_num=1000, points_sigma=0.01, with_dp=False, points=None, extra_points=None ): if in_path is not None: mesh = trimesh.load(in_path, process=False) print(type(mesh.vertices), mesh.vertices.shape, mesh.faces.shape) mesh = trimesh.Trimesh(vertices=vertices, faces=faces, process=False) # print('get_occ_gt', type(mesh.vertices), mesh.vertices.shape, mesh.faces.shape) # points_size = 100000 points_padding = 0.1 # points_sigma = 0.01 points_uniform_ratio = 0.5 n_points_uniform = int(pts_num * points_uniform_ratio) n_points_surface = pts_num - n_points_uniform if points is None: points_scale = 2.0 boxsize = points_scale + points_padding points_uniform = np.random.rand(n_points_uniform, 3) points_uniform = boxsize * (points_uniform - 0.5) points_surface, index_surface = mesh.sample(n_points_surface, return_index=True) points_surface += points_sigma * np.random.randn(n_points_surface, 3) points = np.concatenate([points_uniform, points_surface], axis=0) if extra_points is not None: extra_points += points_sigma * np.random.randn(len(extra_points), 3) points = np.concatenate([points, extra_points], axis=0) occupancies = check_mesh_contains(mesh, points) index_surface = None # points = points.astype(dtype) # print('occupancies', occupancies.dtype, np.sum(occupancies), occupancies.shape) # occupancies = np.packbits(occupancies) # print('occupancies bit', occupancies.dtype, np.sum(occupancies), occupancies.shape) # print('occupancies', points.shape, occupancies.shape, occupancies.dtype, np.sum(occupancies), index_surface.shape) return_dict = {} return_dict['points'] = points return_dict['points.occ'] = occupancies return_dict['sf_sidx'] = index_surface # export_pointcloud(mesh, modelname, loc, scale, args) # export_points(mesh, modelname, loc, scale, args) return return_dict