import cv2 import mediapipe as mp import torch import numpy as np import torch.nn.functional as F from rembg import remove from rembg.session_factory import new_session from PIL import Image from torchvision.models import detection from lib.pymafx.core import constants from lib.common.cloth_extraction import load_segmentation from torchvision import transforms def transform_to_tensor(res, mean=None, std=None, is_tensor=False): all_ops = [] if res is not None: all_ops.append(transforms.Resize(size=res)) if not is_tensor: all_ops.append(transforms.ToTensor()) if mean is not None and std is not None: all_ops.append(transforms.Normalize(mean=mean, std=std)) return transforms.Compose(all_ops) def aug_matrix(w1, h1, w2, h2): dx = (w2 - w1) / 2.0 dy = (h2 - h1) / 2.0 matrix_trans = np.array([[1.0, 0, dx], [0, 1.0, dy], [0, 0, 1.0]]) scale = np.min([float(w2) / w1, float(h2) / h1]) M = get_affine_matrix(center=(w2 / 2.0, h2 / 2.0), translate=(0, 0), scale=scale) M = np.array(M + [0.0, 0.0, 1.0]).reshape(3, 3) M = M.dot(matrix_trans) return M def get_affine_matrix(center, translate, scale): cx, cy = center tx, ty = translate M = [1, 0, 0, 0, 1, 0] M = [x * scale for x in M] # Apply translation and of center translation: RSS * C^-1 M[2] += M[0] * (-cx) + M[1] * (-cy) M[5] += M[3] * (-cx) + M[4] * (-cy) # Apply center translation: T * C * RSS * C^-1 M[2] += cx + tx M[5] += cy + ty return M def load_img(img_file): img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED) if len(img.shape) == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) if not img_file.endswith("png"): img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) else: img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGR) return img def get_keypoints(image): def collect_xyv(x, body=True): lmk = x.landmark all_lmks = [] for i in range(len(lmk)): visibility = lmk[i].visibility if body else 1.0 all_lmks.append(torch.Tensor([lmk[i].x, lmk[i].y, lmk[i].z, visibility])) return torch.stack(all_lmks).view(-1, 4) mp_holistic = mp.solutions.holistic with mp_holistic.Holistic( static_image_mode=True, model_complexity=2, ) as holistic: results = holistic.process(image) fake_kps = torch.zeros(33, 4) result = {} result["body"] = collect_xyv(results.pose_landmarks) if results.pose_landmarks else fake_kps result["lhand"] = collect_xyv(results.left_hand_landmarks, False) if results.left_hand_landmarks else fake_kps result["rhand"] = collect_xyv(results.right_hand_landmarks, False) if results.right_hand_landmarks else fake_kps result["face"] = collect_xyv(results.face_landmarks, False) if results.face_landmarks else fake_kps return result def get_pymafx(image, landmarks): # image [3,512,512] item = {'img_body': F.interpolate(image.unsqueeze(0), size=224, mode='bicubic', align_corners=True)[0]} for part in ['lhand', 'rhand', 'face']: kp2d = landmarks[part] kp2d_valid = kp2d[kp2d[:, 3] > 0.] if len(kp2d_valid) > 0: bbox = [min(kp2d_valid[:, 0]), min(kp2d_valid[:, 1]), max(kp2d_valid[:, 0]), max(kp2d_valid[:, 1])] center_part = [(bbox[2] + bbox[0]) / 2., (bbox[3] + bbox[1]) / 2.] scale_part = 2. * max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 2 # handle invalid part keypoints if len(kp2d_valid) < 1 or scale_part < 0.01: center_part = [0, 0] scale_part = 0.5 kp2d[:, 3] = 0 center_part = torch.tensor(center_part).float() theta_part = torch.zeros(1, 2, 3) theta_part[:, 0, 0] = scale_part theta_part[:, 1, 1] = scale_part theta_part[:, :, -1] = center_part grid = F.affine_grid(theta_part, torch.Size([1, 3, 224, 224]), align_corners=False) img_part = F.grid_sample(image.unsqueeze(0), grid, align_corners=False).squeeze(0).float() item[f'img_{part}'] = img_part theta_i_inv = torch.zeros_like(theta_part) theta_i_inv[:, 0, 0] = 1. / theta_part[:, 0, 0] theta_i_inv[:, 1, 1] = 1. / theta_part[:, 1, 1] theta_i_inv[:, :, -1] = -theta_part[:, :, -1] / theta_part[:, 0, 0].unsqueeze(-1) item[f'{part}_theta_inv'] = theta_i_inv[0] return item def expand_bbox(bbox, width, height, ratio=0.1): bbox = np.around(bbox).astype(np.int16) bbox_width = bbox[2] - bbox[0] bbox_height = bbox[3] - bbox[1] bbox[1] = max(bbox[1] - bbox_height * ratio, 0) bbox[3] = min(bbox[3] + bbox_height * ratio, height) bbox[0] = max(bbox[0] - bbox_width * ratio, 0) bbox[2] = min(bbox[2] + bbox_width * ratio, width) return bbox def remove_floats(mask): # 1. find all the contours # 2. fillPoly "True" for the largest one # 3. fillPoly "False" for its childrens new_mask = np.zeros(mask.shape) cnts, hier = cv2.findContours(mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) cnt_index = sorted(range(len(cnts)), key=lambda k: cv2.contourArea(cnts[k]), reverse=True) body_cnt = cnts[cnt_index[0]] childs_cnt_idx = np.where(np.array(hier)[0, :, -1] == cnt_index[0])[0] childs_cnt = [cnts[idx] for idx in childs_cnt_idx] cv2.fillPoly(new_mask, [body_cnt], 1) cv2.fillPoly(new_mask, childs_cnt, 0) return new_mask def process_image(img_file, hps_type, single, input_res=512): img_raw = load_img(img_file) in_height, in_width = img_raw.shape[:2] M = aug_matrix(in_width, in_height, input_res * 2, input_res * 2) # from rectangle to square by padding (input_res*2, input_res*2) img_square = cv2.warpAffine(img_raw, M[0:2, :], (input_res * 2, input_res * 2), flags=cv2.INTER_CUBIC) # detection for bbox detector = detection.maskrcnn_resnet50_fpn(weights=detection.MaskRCNN_ResNet50_FPN_V2_Weights) detector.eval() predictions = detector([torch.from_numpy(img_square).permute(2, 0, 1) / 255.])[0] if single: top_score = predictions["scores"][predictions["labels"] == 1].max() human_ids = torch.where(predictions["scores"] == top_score)[0] else: human_ids = torch.logical_and(predictions["labels"] == 1, predictions["scores"] > 0.9).nonzero().squeeze(1) boxes = predictions["boxes"][human_ids, :].detach().cpu().numpy() masks = predictions["masks"][human_ids, :, :].permute(0, 2, 3, 1).detach().cpu().numpy() width = boxes[:, 2] - boxes[:, 0] #(N,) height = boxes[:, 3] - boxes[:, 1] #(N,) center = np.array([(boxes[:, 0] + boxes[:, 2]) / 2.0, (boxes[:, 1] + boxes[:, 3]) / 2.0]).T #(N,2) scale = np.array([width, height]).max(axis=0) / 90. img_icon_lst = [] img_crop_lst = [] img_hps_lst = [] img_mask_lst = [] uncrop_param_lst = [] landmark_lst = [] hands_visibility_lst = [] img_pymafx_lst = [] uncrop_param = { "center": center, "scale": scale, "ori_shape": [in_height, in_width], "box_shape": [input_res, input_res], "crop_shape": [input_res * 2, input_res * 2, 3], "M": M, } for idx in range(len(boxes)): # mask out the pixels of others if len(masks) > 1: mask_detection = (masks[np.arange(len(masks)) != idx]).max(axis=0) else: mask_detection = masks[0] * 0. img_crop, _ = crop( np.concatenate([img_square, (mask_detection < 0.4) * 255], axis=2), center[idx], scale[idx], [input_res, input_res]) # get accurate segmentation mask of focus person img_rembg = remove(img_crop, post_process_mask=True, session=new_session("u2net")) img_mask = remove_floats(img_rembg[:, :, [3]]) # required image tensors / arrays # img_icon (tensor): (-1, 1), [3,512,512] # img_hps (tensor): (-2.11, 2.44), [3,224,224] # img_np (array): (0, 255), [512,512,3] # img_rembg (array): (0, 255), [512,512,4] # img_mask (array): (0, 1), [512,512,1] # img_crop (array): (0, 255), [512,512,4] mean_icon = std_icon = (0.5, 0.5, 0.5) img_np = (img_rembg[..., :3] * img_mask).astype(np.uint8) img_icon = transform_to_tensor(512, mean_icon, std_icon)(Image.fromarray(img_np)) * torch.tensor(img_mask).permute( 2, 0, 1) img_hps = transform_to_tensor(224, constants.IMG_NORM_MEAN, constants.IMG_NORM_STD)(Image.fromarray(img_np)) landmarks = get_keypoints(img_np) if hps_type == 'pymafx': img_pymafx_lst.append( get_pymafx( transform_to_tensor(512, constants.IMG_NORM_MEAN, constants.IMG_NORM_STD)(Image.fromarray(img_np)), landmarks)) img_crop_lst.append(torch.tensor(img_crop).permute(2, 0, 1) / 255.0) img_icon_lst.append(img_icon) img_hps_lst.append(img_hps) img_mask_lst.append(torch.tensor(img_mask[..., 0])) uncrop_param_lst.append(uncrop_param) landmark_lst.append(landmarks['body']) hands_visibility = [True, True] if landmarks['lhand'][:, -1].mean() == 0.: hands_visibility[0] = False if landmarks['rhand'][:, -1].mean() == 0.: hands_visibility[1] = False hands_visibility_lst.append(hands_visibility) return_dict = { "img_icon": torch.stack(img_icon_lst).float(), #[N, 3, res, res] "img_crop": torch.stack(img_crop_lst).float(), #[N, 4, res, res] "img_hps": torch.stack(img_hps_lst).float(), #[N, 3, res, res] "img_raw": img_raw, #[H, W, 3] "img_mask": torch.stack(img_mask_lst).float(), #[N, res, res] "uncrop_param": uncrop_param, "landmark": torch.stack(landmark_lst), #[N, 33, 4] "hands_visibility": hands_visibility_lst, } img_pymafx = {} if len(img_pymafx_lst) > 0: for idx in range(len(img_pymafx_lst)): for key in img_pymafx_lst[idx].keys(): if key not in img_pymafx.keys(): img_pymafx[key] = [img_pymafx_lst[idx][key]] else: img_pymafx[key] += [img_pymafx_lst[idx][key]] for key in img_pymafx.keys(): img_pymafx[key] = torch.stack(img_pymafx[key]).float() return_dict.update({"img_pymafx": img_pymafx}) return return_dict def get_transform(center, scale, res): """Generate transformation matrix.""" h = 100 * scale t = np.zeros((3, 3)) t[0, 0] = float(res[1]) / h t[1, 1] = float(res[0]) / h t[0, 2] = res[1] * (-float(center[0]) / h + 0.5) t[1, 2] = res[0] * (-float(center[1]) / h + 0.5) t[2, 2] = 1 return t def transform(pt, center, scale, res, invert=0): """Transform pixel location to different reference.""" t = get_transform(center, scale, res) if invert: t = np.linalg.inv(t) new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.0]).T new_pt = np.dot(t, new_pt) return np.around(new_pt[:2]).astype(np.int16) def crop(img, center, scale, res): """Crop image according to the supplied bounding box.""" img_height, img_width = img.shape[:2] # Upper left point ul = np.array(transform([0, 0], center, scale, res, invert=1)) # Bottom right point br = np.array(transform(res, center, scale, res, invert=1)) new_shape = [br[1] - ul[1], br[0] - ul[0]] if len(img.shape) > 2: new_shape += [img.shape[2]] new_img = np.zeros(new_shape) # Range to fill new array new_x = max(0, -ul[0]), min(br[0], img_width) - ul[0] new_y = max(0, -ul[1]), min(br[1], img_height) - ul[1] # Range to sample from original image old_x = max(0, ul[0]), min(img_width, br[0]) old_y = max(0, ul[1]), min(img_height, br[1]) new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], old_x[0]:old_x[1]] new_img = F.interpolate( torch.tensor(new_img).permute(2, 0, 1).unsqueeze(0), res, mode='bilinear').permute(0, 2, 3, 1)[0].numpy().astype(np.uint8) return new_img, (old_x, new_x, old_y, new_y, new_shape) def crop_segmentation(org_coord, res, cropping_parameters): old_x, new_x, old_y, new_y, new_shape = cropping_parameters new_coord = np.zeros((org_coord.shape)) new_coord[:, 0] = new_x[0] + (org_coord[:, 0] - old_x[0]) new_coord[:, 1] = new_y[0] + (org_coord[:, 1] - old_y[0]) new_coord[:, 0] = res[0] * (new_coord[:, 0] / new_shape[1]) new_coord[:, 1] = res[1] * (new_coord[:, 1] / new_shape[0]) return new_coord def corner_align(ul, br): if ul[1] - ul[0] != br[1] - br[0]: ul[1] = ul[0] + br[1] - br[0] return ul, br def uncrop(img, center, scale, orig_shape): """'Undo' the image cropping/resizing. This function is used when evaluating mask/part segmentation. """ res = img.shape[:2] # Upper left point ul = np.array(transform([0, 0], center, scale, res, invert=1)) # Bottom right point br = np.array(transform(res, center, scale, res, invert=1)) # quick fix ul, br = corner_align(ul, br) # size of cropped image crop_shape = [br[1] - ul[1], br[0] - ul[0]] new_img = np.zeros(orig_shape, dtype=np.uint8) # Range to fill new array new_x = max(0, -ul[0]), min(br[0], orig_shape[1]) - ul[0] new_y = max(0, -ul[1]), min(br[1], orig_shape[0]) - ul[1] # Range to sample from original image old_x = max(0, ul[0]), min(orig_shape[1], br[0]) old_y = max(0, ul[1]), min(orig_shape[0], br[1]) img = np.array(Image.fromarray(img.astype(np.uint8)).resize(crop_shape)) new_img[old_y[0]:old_y[1], old_x[0]:old_x[1]] = img[new_y[0]:new_y[1], new_x[0]:new_x[1]] return new_img def rot_aa(aa, rot): """Rotate axis angle parameters.""" # pose parameters R = np.array([ [np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0], [np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0], [0, 0, 1], ]) # find the rotation of the body in camera frame per_rdg, _ = cv2.Rodrigues(aa) # apply the global rotation to the global orientation resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg)) aa = (resrot.T)[0] return aa def flip_img(img): """Flip rgb images or masks. channels come last, e.g. (256,256,3). """ img = np.fliplr(img) return img def flip_kp(kp, is_smpl=False): """Flip keypoints.""" if len(kp) == 24: if is_smpl: flipped_parts = constants.SMPL_JOINTS_FLIP_PERM else: flipped_parts = constants.J24_FLIP_PERM elif len(kp) == 49: if is_smpl: flipped_parts = constants.SMPL_J49_FLIP_PERM else: flipped_parts = constants.J49_FLIP_PERM kp = kp[flipped_parts] kp[:, 0] = -kp[:, 0] return kp def flip_pose(pose): """Flip pose. The flipping is based on SMPL parameters. """ flipped_parts = constants.SMPL_POSE_FLIP_PERM pose = pose[flipped_parts] # we also negate the second and the third dimension of the axis-angle pose[1::3] = -pose[1::3] pose[2::3] = -pose[2::3] return pose def normalize_2d_kp(kp_2d, crop_size=224, inv=False): # Normalize keypoints between -1, 1 if not inv: ratio = 1.0 / crop_size kp_2d = 2.0 * kp_2d * ratio - 1.0 else: ratio = 1.0 / crop_size kp_2d = (kp_2d + 1.0) / (2 * ratio) return kp_2d def visualize_landmarks(image, joints, color): img_w, img_h = image.shape[:2] for joint in joints: image = cv2.circle(image, (int(joint[0] * img_w), int(joint[1] * img_h)), 5, color) return image def generate_heatmap(joints, heatmap_size, sigma=1, joints_vis=None): """ param joints: [num_joints, 3] param joints_vis: [num_joints, 3] return: target, target_weight(1: visible, 0: invisible) """ num_joints = joints.shape[0] device = joints.device cur_device = torch.device(device.type, device.index) if not hasattr(heatmap_size, "__len__"): # width height heatmap_size = [heatmap_size, heatmap_size] assert len(heatmap_size) == 2 target_weight = np.ones((num_joints, 1), dtype=np.float32) if joints_vis is not None: target_weight[:, 0] = joints_vis[:, 0] target = torch.zeros( (num_joints, heatmap_size[1], heatmap_size[0]), dtype=torch.float32, device=cur_device, ) tmp_size = sigma * 3 for joint_id in range(num_joints): mu_x = int(joints[joint_id][0] * heatmap_size[0] + 0.5) mu_y = int(joints[joint_id][1] * heatmap_size[1] + 0.5) # Check that any part of the gaussian is in-bounds ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)] br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)] if (ul[0] >= heatmap_size[0] or ul[1] >= heatmap_size[1] or br[0] < 0 or br[1] < 0): # If not, just return the image as is target_weight[joint_id] = 0 continue # # Generate gaussian size = 2 * tmp_size + 1 # x = np.arange(0, size, 1, np.float32) # y = x[:, np.newaxis] # x0 = y0 = size // 2 # # The gaussian is not normalized, we want the center value to equal 1 # g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2)) # g = torch.from_numpy(g.astype(np.float32)) x = torch.arange(0, size, dtype=torch.float32, device=cur_device) y = x.unsqueeze(-1) x0 = y0 = size // 2 # The gaussian is not normalized, we want the center value to equal 1 g = torch.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2)) # Usable gaussian range g_x = max(0, -ul[0]), min(br[0], heatmap_size[0]) - ul[0] g_y = max(0, -ul[1]), min(br[1], heatmap_size[1]) - ul[1] # Image range img_x = max(0, ul[0]), min(br[0], heatmap_size[0]) img_y = max(0, ul[1]), min(br[1], heatmap_size[1]) v = target_weight[joint_id] if v > 0.5: target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]] return target, target_weight