import os import json import openai import tempfile import gradio as gr import infer import config from neon_tts_plugin_coqui import CoquiTTS title = "Speech to ChatGPT to Speech" coquiTTS = CoquiTTS() LANGUAGES = list(CoquiTTS.langs.keys()) LANGUAGES = LANGUAGES + ['cn', 'jp'] default_lang = "en" whisper = gr.Interface.load(name="spaces/sanchit-gandhi/whisper-large-v2") api_key = os.environ.get('api_key') #if you have OpenAI API key as a string, enable the below openai.api_key = api_key pth_path = config.pth_path config_json = config.config_json net_g_ms, hps = infer.load_model(config_json, pth_path) # ChatGPT def chat_hf(audio, custom_token, language): try: whisper_text = translate(audio) if whisper_text == "ERROR: You have to either use the microphone or upload an audio file": gpt_response = "MISSING AUDIO: Record your voice by clicking the microphone button, do not forget to stop recording before sending your message ;)" else: gpt_response = openai_create(whisper_text) except: whisper_text = translate(audio) gpt_response = """Sorry, I'm quite busy right now, but please try again later :)""" # to voice if language == 'cn' or 'jp': text = gpt_response.strip().replace(' ', '').replace('\n', '').replace('\r', '') text = infer.clean_text(text) audio = infer.infer(text, net_g_ms, 0, "demo") voice_out = (hps.data.sampling_rate, audio) else: with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: coquiTTS.get_tts(gpt_response, fp, speaker = {"language" : language}) voice_out = fp.name return whisper_text, gpt_response, voice_out def translate(audio): print(""" — Sending audio to Whisper ... — """) text_result = whisper(audio, None, "transcribe", fn_index=0) print(text_result) return text_result def openai_create(prompt): print(""" — Giving response from ai ... — """) response = openai.Completion.create( model="text-davinci-003", prompt=prompt, temperature=0.9, max_tokens=150, top_p=1, frequency_penalty=0, presence_penalty=0.6, stop=[" Human:", " AI:"] ) print(response.choices[0].text) return response.choices[0].text with gr.Blocks() as blocks: gr.Markdown("