import torch import torch.nn as nn from functools import partial from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test from torch.utils.checkpoint import checkpoint from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel, AutoTokenizer from importlib_resources import files from ldm.modules.encoders.CLAP.utils import read_config_as_args from ldm.modules.encoders.CLAP.clap import TextEncoder import copy from ldm.util import default, count_params import pytorch_lightning as pl class AbstractEncoder(pl.LightningModule): def __init__(self): super().__init__() def encode(self, *args, **kwargs): raise NotImplementedError class ClassEmbedder(nn.Module): def __init__(self, embed_dim, n_classes=1000, key='class'): super().__init__() self.key = key self.embedding = nn.Embedding(n_classes, embed_dim) def forward(self, batch, key=None): if key is None: key = self.key # this is for use in crossattn c = batch[key][:, None]# (bsz,1) c = self.embedding(c) return c class TransformerEmbedder(AbstractEncoder): """Some transformer encoder layers""" def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"): super().__init__() self.device = device self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, attn_layers=Encoder(dim=n_embed, depth=n_layer)) def forward(self, tokens): tokens = tokens.to(self.device) # meh z = self.transformer(tokens, return_embeddings=True) return z def encode(self, x): return self(x) class BERTTokenizer(AbstractEncoder): """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)""" def __init__(self, device="cuda", vq_interface=True, max_length=77): super().__init__() from transformers import BertTokenizerFast # TODO: add to reuquirements self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") self.device = device self.vq_interface = vq_interface self.max_length = max_length def forward(self, text): batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") tokens = batch_encoding["input_ids"].to(self.device) return tokens @torch.no_grad() def encode(self, text): tokens = self(text) if not self.vq_interface: return tokens return None, None, [None, None, tokens] def decode(self, text): return text class BERTEmbedder(AbstractEncoder):# 这里不是用的pretrained bert,是用的transformers的BertTokenizer加自定义的TransformerWrapper """Uses the BERT tokenizr model and add some transformer encoder layers""" def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77, device="cuda",use_tokenizer=True, embedding_dropout=0.0): super().__init__() self.use_tknz_fn = use_tokenizer if self.use_tknz_fn: self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len) self.device = device self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, attn_layers=Encoder(dim=n_embed, depth=n_layer), emb_dropout=embedding_dropout) def forward(self, text): if self.use_tknz_fn: tokens = self.tknz_fn(text)#.to(self.device) else: tokens = text z = self.transformer(tokens, return_embeddings=True) return z def encode(self, text): # output of length 77 return self(text) class SpatialRescaler(nn.Module): def __init__(self, n_stages=1, method='bilinear', multiplier=0.5, in_channels=3, out_channels=None, bias=False): super().__init__() self.n_stages = n_stages assert self.n_stages >= 0 assert method in ['nearest','linear','bilinear','trilinear','bicubic','area'] self.multiplier = multiplier self.interpolator = partial(torch.nn.functional.interpolate, mode=method) self.remap_output = out_channels is not None if self.remap_output: print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.') self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias) def forward(self,x): for stage in range(self.n_stages): x = self.interpolator(x, scale_factor=self.multiplier) if self.remap_output: x = self.channel_mapper(x) return x def encode(self, x): return self(x) def disabled_train(self, mode=True): """Overwrite model.train with this function to make sure train/eval mode does not change anymore.""" return self class FrozenT5Embedder(AbstractEncoder): """Uses the T5 transformer encoder for text""" def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl super().__init__() self.tokenizer = T5Tokenizer.from_pretrained(version) self.transformer = T5EncoderModel.from_pretrained(version) self.device = device self.max_length = max_length # TODO: typical value? if freeze: self.freeze() def freeze(self): self.transformer = self.transformer.eval() #self.train = disabled_train for param in self.parameters(): param.requires_grad = False def forward(self, text): batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") tokens = batch_encoding["input_ids"].to(self.device) outputs = self.transformer(input_ids=tokens) z = outputs.last_hidden_state return z def encode(self, text): return self(text) class FrozenFLANEmbedder(AbstractEncoder): """Uses the T5 transformer encoder for text""" def __init__(self, version="google/flan-t5-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl super().__init__() self.tokenizer = T5Tokenizer.from_pretrained(version) self.transformer = T5EncoderModel.from_pretrained(version) self.device = device self.max_length = max_length # TODO: typical value? if freeze: self.freeze() def freeze(self): self.transformer = self.transformer.eval() #self.train = disabled_train for param in self.parameters(): param.requires_grad = False def forward(self, text): batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") tokens = batch_encoding["input_ids"].to(self.device)# tango的flanT5是不定长度的batch,这里做成定长的batch outputs = self.transformer(input_ids=tokens) z = outputs.last_hidden_state return z def encode(self, text): return self(text) class FrozenCLAPEmbedder(AbstractEncoder): """Uses the CLAP transformer encoder for text from microsoft""" def __init__(self, weights_path, freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32 super().__init__() model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model'] match_params = dict() for key in list(model_state_dict.keys()): if 'caption_encoder' in key: match_params[key.replace('caption_encoder.', '')] = model_state_dict[key] config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text() args = read_config_as_args(config_as_str, is_config_str=True) # To device self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model self.caption_encoder = TextEncoder( args.d_proj, args.text_model, args.transformer_embed_dim ) self.max_length = max_length self.device = device if freeze: self.freeze() print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.") def freeze(self):# only freeze self.caption_encoder.base = self.caption_encoder.base.eval() for param in self.caption_encoder.base.parameters(): param.requires_grad = False def encode(self, text): batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") tokens = batch_encoding["input_ids"].to(self.device) outputs = self.caption_encoder.base(input_ids=tokens) z = self.caption_encoder.projection(outputs.last_hidden_state) return z class FrozenLAIONCLAPEmbedder(AbstractEncoder): """Uses the CLAP transformer encoder for text from LAION-AI""" def __init__(self, weights_path, freeze=True,sentence=False, device="cuda", max_length=77): # clip-vit-base-patch32 super().__init__() # To device from transformers import RobertaTokenizer from ldm.modules.encoders.open_clap import create_model self.sentence = sentence model, model_cfg = create_model( 'HTSAT-tiny', 'roberta', weights_path, enable_fusion=True, fusion_type='aff_2d' ) del model.audio_branch, model.audio_transform, model.audio_projection self.tokenizer = RobertaTokenizer.from_pretrained('roberta-base') self.model = model self.max_length = max_length self.device = device self.to(self.device) if freeze: self.freeze() param_num = sum(p.numel() for p in model.parameters()) print(f'{self.model.__class__.__name__} comes with: {param_num / 1e6:.3f} M params.') def to(self,device): self.model.to(device=device) self.device=device def freeze(self): self.model = self.model.eval() for param in self.model.parameters(): param.requires_grad = False def encode(self, text): batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, padding="max_length", return_tensors="pt").to(self.device) if self.sentence: z = self.model.get_text_embedding(batch_encoding).unsqueeze(1) else: # text_branch is roberta outputs = self.model.text_branch(input_ids=batch_encoding["input_ids"].to(self.device), attention_mask=batch_encoding["attention_mask"].to(self.device)) z = self.model.text_projection(outputs.last_hidden_state) return z class FrozenLAIONCLAPSetenceEmbedder(AbstractEncoder): """Uses the CLAP transformer encoder for text from LAION-AI""" def __init__(self, weights_path, freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32 super().__init__() # To device from transformers import RobertaTokenizer from ldm.modules.encoders.open_clap import create_model model, model_cfg = create_model( 'HTSAT-tiny', 'roberta', weights_path, enable_fusion=True, fusion_type='aff_2d' ) del model.audio_branch, model.audio_transform, model.audio_projection self.tokenize = RobertaTokenizer.from_pretrained('roberta-base') self.model = model self.max_length = max_length self.device = device if freeze: self.freeze() param_num = sum(p.numel() for p in model.parameters()) print(f'{self.model.__class__.__name__} comes with: {param_num / 1e+6:.3f} M params.') def freeze(self): self.model = self.model.eval() for param in self.model.parameters(): param.requires_grad = False def tokenizer(self, text): result = self.tokenize( text, padding="max_length", truncation=True, max_length=512, return_tensors="pt", ) return result def encode(self, text): with torch.no_grad(): # the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode text_data = self.tokenizer(text)# input_ids shape:(b,512) embed = self.model.get_text_embedding(text_data) embed = embed.unsqueeze(1)# (b,1,512) return embed class FrozenCLAPOrderEmbedder2(AbstractEncoder):# 每个object后面都加上| """Uses the CLAP transformer encoder for text (from huggingface)""" def __init__(self, weights_path, freeze=True, device="cuda"): super().__init__() model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model'] match_params = dict() for key in list(model_state_dict.keys()): if 'caption_encoder' in key: match_params[key.replace('caption_encoder.', '')] = model_state_dict[key] config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text() args = read_config_as_args(config_as_str, is_config_str=True) # To device self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model self.caption_encoder = TextEncoder( args.d_proj, args.text_model, args.transformer_embed_dim ).to(device) self.max_objs = 10 self.max_length = args.text_len self.device = device self.order_to_label = self.build_order_dict() if freeze: self.freeze() print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.") def freeze(self): self.caption_encoder.base = self.caption_encoder.base.eval() for param in self.caption_encoder.base.parameters(): param.requires_grad = False def build_order_dict(self): order2label = {} num_orders = 10 time_stamps = ['start','mid','end'] time_num = len(time_stamps) for i in range(num_orders): for j,time_stamp in enumerate(time_stamps): order2label[f'order {i} {time_stamp}'] = i * time_num + j order2label['all'] = num_orders*len(time_stamps) order2label['unknown'] = num_orders*len(time_stamps) + 1 return order2label def encode(self, text): obj_list,orders_list = [],[] for raw in text: splits = raw.split('@') # raw example: '@@' objs = [] orders = [] for split in splits:# split = split[1:-1] obj,order = split.split('&') objs.append(obj.strip()) try: orders.append(self.order_to_label[order.strip()]) except: print(order.strip(),raw) assert len(objs) == len(orders) obj_list.append(' | '.join(objs)+' |')# '|' after every word orders_list.append(orders) batch_encoding = self.tokenizer(obj_list, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") tokens = batch_encoding["input_ids"] outputs = self.caption_encoder.base(input_ids=tokens.to(self.device)) z = self.caption_encoder.projection(outputs.last_hidden_state) return {'token_embedding':z,'token_ids':tokens,'orders':orders_list} class FrozenCLAPOrderEmbedder3(AbstractEncoder):# 相比于FrozenCLAPOrderEmbedder2移除了projection,使用正确的max_len,去除了order仅保留时间。 """Uses the CLAP transformer encoder for text (from huggingface)""" def __init__(self, weights_path, freeze=True, device="cuda"): # clip-vit-base-patch32 super().__init__() model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model'] match_params = dict() for key in list(model_state_dict.keys()): if 'caption_encoder' in key: match_params[key.replace('caption_encoder.', '')] = model_state_dict[key] config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text() args = read_config_as_args(config_as_str, is_config_str=True) # To device self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model self.caption_encoder = TextEncoder( args.d_proj, args.text_model, args.transformer_embed_dim ).to(device) self.max_objs = 10 self.max_length = args.text_len self.device = device self.order_to_label = self.build_order_dict() if freeze: self.freeze() print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.") def freeze(self): self.caption_encoder.base = self.caption_encoder.base.eval() for param in self.caption_encoder.base.parameters(): param.requires_grad = False def build_order_dict(self): order2label = {} time_stamps = ['all','start','mid','end'] for i,time_stamp in enumerate(time_stamps): order2label[time_stamp] = i return order2label def encode(self, text): obj_list,orders_list = [],[] for raw in text: splits = raw.split('@') # raw example: '@@' objs = [] orders = [] for split in splits:# split = split[1:-1] obj,order = split.split('&') objs.append(obj.strip()) try: orders.append(self.order_to_label[order.strip()]) except: print(order.strip(),raw) assert len(objs) == len(orders) obj_list.append(' | '.join(objs)+' |')# '|' after every word orders_list.append(orders) batch_encoding = self.tokenizer(obj_list, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") tokens = batch_encoding["input_ids"] attn_mask = batch_encoding["attention_mask"] outputs = self.caption_encoder.base(input_ids=tokens.to(self.device)) z = outputs.last_hidden_state return {'token_embedding':z,'token_ids':tokens,'orders':orders_list,'attn_mask':attn_mask} class FrozenCLAPT5Embedder(AbstractEncoder): """Uses the CLAP transformer encoder for text from microsoft""" def __init__(self, weights_path,t5version="google/flan-t5-large", freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32 super().__init__() model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model'] match_params = dict() for key in list(model_state_dict.keys()): if 'caption_encoder' in key: match_params[key.replace('caption_encoder.', '')] = model_state_dict[key] config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text() args = read_config_as_args(config_as_str, is_config_str=True) self.clap_tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model self.caption_encoder = TextEncoder( args.d_proj, args.text_model, args.transformer_embed_dim ) self.t5_tokenizer = T5Tokenizer.from_pretrained(t5version) self.t5_transformer = T5EncoderModel.from_pretrained(t5version) self.max_length = max_length self.to(device=device) if freeze: self.freeze() print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.") def freeze(self): self.caption_encoder = self.caption_encoder.eval() for param in self.caption_encoder.parameters(): param.requires_grad = False def to(self,device): self.t5_transformer.to(device) self.caption_encoder.to(device) self.device = device def encode(self, text): ori_caption = text['ori_caption'] struct_caption = text['struct_caption'] # print(ori_caption,struct_caption) clap_batch_encoding = self.clap_tokenizer(ori_caption, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") ori_tokens = clap_batch_encoding["input_ids"].to(self.device) t5_batch_encoding = self.t5_tokenizer(struct_caption, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") struct_tokens = t5_batch_encoding["input_ids"].to(self.device) outputs = self.caption_encoder.base(input_ids=ori_tokens) z = self.caption_encoder.projection(outputs.last_hidden_state) z2 = self.t5_transformer(input_ids=struct_tokens).last_hidden_state return torch.concat([z,z2],dim=1) class FrozenCLAPFLANEmbedder(AbstractEncoder): """Uses the CLAP transformer encoder for text from microsoft""" def __init__(self, weights_path,t5version="../ldm/modules/encoders/CLAP/t5-v1_1-large", freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32 super().__init__() model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model'] match_params = dict() for key in list(model_state_dict.keys()): if 'caption_encoder' in key: match_params[key.replace('caption_encoder.', '')] = model_state_dict[key] config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yaml').read_text() args = read_config_as_args(config_as_str, is_config_str=True) self.clap_tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model self.caption_encoder = TextEncoder( args.d_proj, args.text_model, args.transformer_embed_dim ) self.t5_tokenizer = T5Tokenizer.from_pretrained(t5version) self.t5_transformer = T5EncoderModel.from_pretrained(t5version) self.max_length = max_length # self.to(device=device) if freeze: self.freeze() print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.") def freeze(self): self.caption_encoder = self.caption_encoder.eval() for param in self.caption_encoder.parameters(): param.requires_grad = False def to(self,device): self.t5_transformer.to(device) self.caption_encoder.to(device) self.device = device def encode(self, text): ori_caption = text['ori_caption'] struct_caption = text['struct_caption'] # print(ori_caption,struct_caption) clap_batch_encoding = self.clap_tokenizer(ori_caption, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") ori_tokens = clap_batch_encoding["input_ids"].to(self.device) t5_batch_encoding = self.t5_tokenizer(struct_caption, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") struct_tokens = t5_batch_encoding["input_ids"].to(self.device) # if self.caption_encoder.device != ori_tokens.device: # self.to(self.device) outputs = self.caption_encoder.base(input_ids=ori_tokens) z = self.caption_encoder.projection(outputs.last_hidden_state) z2 = self.t5_transformer(input_ids=struct_tokens).last_hidden_state return torch.concat([z,z2],dim=1)