import torch import streamlit as st from transformers import AutoTokenizer, OPTForCausalLM @st.cache_resource def load_model(): tokenizer = AutoTokenizer.from_pretrained("facebook/galactica-30b") model = OPTForCausalLM.from_pretrained("facebook/galactica-30b", device_map='auto', low_cpu_mem_usage=True, torch_dtype=torch.float16) model.gradient_checkpointing_enable() return tokenizer, model st.set_page_config( page_title='BioML-SVM', layout="wide" ) with st.spinner("Loading Models and Tokens..."): tokenizer, model = load_model() with st.form(key='my_form'): col1, col2 = st.columns([10, 1]) text_input = col1.text_input(label='Enter the amino sequence') with col2: st.text('') st.text('') submit_button = st.form_submit_button(label='Submit') if submit_button: st.session_state['result_done'] = False # input_text = "[START_AMINO]GHMQSITAGQKVISKHKNGRFYQCEVVRLTTETFYEVNFDDGSFSDNLYPEDIVSQDCLQFGPPAEGEVVQVRWTDGQVYGAKFVASHPIQMYQVEFEDGSQLVVKRDDVYTLDEELP[END_AMINO]" with st.spinner('Generating...'): # formatted_text = f"[START_AMINO]{text_input}[END_AMINO]" # formatted_text = f"Here is the sequence: [START_AMINO]{text_input}[END_AMINO]" formatted_text = f"{text_input}" input_ids = tokenizer(formatted_text, return_tensors="pt").input_ids.to("cuda") outputs = model.generate( input_ids=input_ids, max_new_tokens=500 ) result = tokenizer.decode(outputs[0]).replace(formatted_text, "") st.markdown(result) if 'result_done' not in st.session_state or not st.session_state.result_done: st.session_state['result_done'] = True st.session_state['previous_state'] = result else: if 'result_done' in st.session_state and st.session_state.result_done: st.markdown(st.session_state.previous_state) if 'result_done' in st.session_state and st.session_state.result_done: with st.form(key='ask_more'): col1, col2 = st.columns([10, 1]) text_input = col1.text_input(label='Ask more question') with col2: st.text('') st.text('') submit_button = st.form_submit_button(label='Submit') if submit_button: with st.spinner('Generating...'): # formatted_text = f"[START_AMINO]{text_input}[END_AMINO]" formatted_text = f"Q:{text_input}\n\nA:\n\n" input_ids = tokenizer(formatted_text, return_tensors="pt").input_ids.to("cuda") outputs = model.generate( input_ids=input_ids, max_length=len(formatted_text) + 500, do_sample=True, top_k=40, num_beams=1, num_return_sequences=1 ) result = tokenizer.decode(outputs[0]).replace(formatted_text, "") st.markdown(result)