import os import subprocess import streamlit as st from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer import black from pylint import lint from io import StringIO # Set Hugging Face repository URL and project root path HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/Mistri" PROJECT_ROOT = "projects" AGENT_DIRECTORY = "agents" # Global state for session management if 'chat_history' not in st.session_state: st.session_state.chat_history = [] if 'terminal_history' not in st.session_state: st.session_state.terminal_history = [] if 'workspace_projects' not in st.session_state: st.session_state.workspace_projects = {} if 'available_agents' not in st.session_state: st.session_state.available_agents = [] if 'current_state' not in st.session_state: st.session_state.current_state = { 'toolbox': {}, 'workspace_chat': {} } # Define AIAgent class class AIAgent: def __init__(self, name, description, skills): self.name = name self.description = description self.skills = skills def create_agent_prompt(self): skills_str = '\n'.join([f"* {skill}" for skill in self.skills]) agent_prompt = f""" As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas: {skills_str} I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter. """ return agent_prompt def autonomous_build(self, chat_history, workspace_projects): """ Autonomous build logic based on chat history and workspace projects. """ summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history]) summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()]) # Use a Hugging Face model for more advanced logic (e.g., a summarization model) summarizer = pipeline("summarization") next_step = summarizer(summary, max_length=50, min_length=25, do_sample=False)[0]['summary_text'] return summary, next_step # Function to save an agent's prompt to a file and commit to the Hugging Face repository def save_agent_to_file(agent): """Saves the agent's prompt to a file locally and then commits to the Hugging Face repository.""" if not os.path.exists(AGENT_DIRECTORY): os.makedirs(AGENT_DIRECTORY) file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt") config_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}Config.txt") with open(file_path, "w") as file: file.write(agent.create_agent_prompt()) with open(config_path, "w") as file: file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}") st.session_state.available_agents.append(agent.name) commit_and_push_changes(f"Add agent {agent.name}") # Function to load an agent's prompt from a file def load_agent_prompt(agent_name): """Loads an agent prompt from a file.""" file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt") if os.path.exists(file_path): with open(file_path, "r") as file: agent_prompt = file.read() return agent_prompt else: return None # Function to create an agent from text input def create_agent_from_text(name, text): skills = text.split('\n') agent = AIAgent(name, "AI agent created from text input.", skills) save_agent_to_file(agent) return agent.create_agent_prompt() # Chat interface using a selected agent def chat_interface_with_agent(input_text, agent_name): agent_prompt = load_agent_prompt(agent_name) if agent_prompt is None: return f"Agent {agent_name} not found." # Load GPT-2 model model_name = "gpt2" try: model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) generator = pipeline("text-generation", model=model, tokenizer=tokenizer) except EnvironmentError as e: return f"Error loading model: {e}" # Combine agent prompt with user input combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:" # Truncate input text for model length limit max_input_length = 900 input_ids = tokenizer.encode(combined_input, return_tensors="pt") if input_ids.shape[1] > max_input_length: input_ids = input_ids[:, :max_input_length] # Generate chatbot response outputs = model.generate( input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True, pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Workspace interface for creating projects def workspace_interface(project_name): project_path = os.path.join(PROJECT_ROOT, project_name) if not os.path.exists(PROJECT_ROOT): os.makedirs(PROJECT_ROOT) if not os.path.exists(project_path): os.makedirs(project_path) st.session_state.workspace_projects[project_name] = {"files": []} st.session_state.current_state['workspace_chat']['project_name'] = project_name commit_and_push_changes(f"Create project {project_name}") return f"Project {project_name} created successfully." else: return f"Project {project_name} already exists." # Function to add code to the workspace def add_code_to_workspace(project_name, code, file_name): project_path = os.path.join(PROJECT_ROOT, project_name) if os.path.exists(project_path): file_path = os.path.join(project_path, file_name) with open(file_path, "w") as file: file.write(code) st.session_state.workspace_projects[project_name]["files"].append(file_name) st.session_state.current_state['workspace_chat']['added_code'] = {"file_name": file_name, "code": code} commit_and_push_changes(f"Add code to {file_name} in project {project_name}") return f"Code added to {file_name} in project {project_name} successfully." else: return f"Project {project_name} does not exist." # Terminal interface with optional project context def terminal_interface(command, project_name=None): if project_name: project_path = os.path.join(PROJECT_ROOT, project_name) if not os.path.exists(project_path): return f"Project {project_name} does not exist." result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True) else: result = subprocess.run(command, shell=True, capture_output=True, text=True) if result.returncode == 0: st.session_state.current_state['toolbox']['terminal_output'] = result.stdout return result.stdout else: st.session_state.current_state['toolbox']['terminal_output'] = result.stderr return result.stderr # Code editor interface for formatting and linting def code_editor_interface(code): try: formatted_code = black.format_str(code, mode=black.FileMode()) except black.NothingChanged: formatted_code = code result = StringIO() sys.stdout = result sys.stderr = result (pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True) sys.stdout = sys.stdout sys.stderr = sys.stderr lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue() st.session_state.current_state['toolbox']['formatted_code'] = formatted_code st.session_state.current_state['toolbox']['lint_message'] = lint_message return formatted_code, lint_message # Function to summarize text using a summarization pipeline def summarize_text(text): summarizer = pipeline("summarization") summary = summarizer(text, max_length=50, min_length=25, do_sample=False) st.session_state.current_state['toolbox']['summary'] = summary[0]['summary_text'] return summary[0]['summary_text'] # Function to perform sentiment analysis using a sentiment analysis pipeline def sentiment_analysis(text): analyzer = pipeline("sentiment-analysis") sentiment = analyzer(text) st.session_state.current_state['toolbox']['sentiment'] = sentiment[0] return sentiment[0] # Function to translate code using the OpenAI API def translate_code(code, input_language, output_language): # Define a dictionary to map programming languages to their corresponding file extensions language_extensions = { # ignore the specific languages right now, and continue to EOF } # Add code to handle edge cases such as invalid input and unsupported programming languages if input_language not in language_extensions: raise ValueError(f"Invalid input language: {input_language}") if output_language not in language_extensions: raise ValueError(f"Invalid output language: {output_language}") # Use the dictionary to map the input and output languages to their corresponding file extensions input_extension = language_extensions[input_language] output_extension = language_extensions[output_language] # Translate the code using the OpenAI API prompt = f"Translate this code from {input_language} to {output_language}:\n\n{code}" response = openai.ChatCompletion.create( model="gpt-4", messages=[ {"role": "system", "content": "You are an expert software developer."}, {"role": "user", "content": prompt} ] ) translated_code = response.choices[0].message['content'].strip() # Return the translated code translated_code = response.choices[0].message['content'].strip() st.session_state.current_state['toolbox']['translated_code'] = translated_code return translated_code # Function to generate code based on a code idea using the OpenAI API def generate_code(code_idea): response = openai.ChatCompletion.create( model="gpt-4", messages=[ {"role": "system", "content": "You are an expert software developer."}, {"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"} ] ) generated_code = response.choices[0].message['content'].strip() st.session_state.current_state['toolbox']['generated_code'] = generated_code return generated_code # Function to commit and push changes to the Hugging Face repository def commit_and_push_changes(commit_message): """Commits and pushes changes to the Hugging Face repository.""" commands = [ "git add .", f"git commit -m '{commit_message}'", "git push" ] for command in commands: result = subprocess.run(command, shell=True, capture_output=True, text=True) if result.returncode != 0: st.error(f"Error executing command '{command}': {result.stderr}") break # Streamlit App st.title("AI Agent Creator") # Sidebar navigation st.sidebar.title("Navigation") app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"]) # AI Agent Creator if app_mode == "AI Agent Creator": st.header("Create an AI Agent from Text") st.subheader("From Text") agent_name = st.text_input("Enter agent name:") text_input = st.text_area("Enter skills (one per line):") if st.button("Create Agent"): agent_prompt = create_agent_from_text(agent_name, text_input) st.success(f"Agent '{agent_name}' created and saved successfully.") st.session_state.available_agents.append(agent_name) # Tool Box elif app_mode == "Tool Box": st.header("AI-Powered Tools") # Chat Interface st.subheader("Chat with CodeCraft") chat_input = st.text_area("Enter your message:") if st.button("Send"): if chat_input.startswith("@"): agent_name = chat_input.split(" ")[0][1:] # Extract agent_name from @agent_name chat_input = " ".join(chat_input.split(" ")[1:]) # Remove agent_name from input chat_response = chat_interface_with_agent(chat_input, agent_name) else: chat_response = chat_interface(chat_input) st.session_state.chat_history.append((chat_input, chat_response)) st.write(f"CodeCraft: {chat_response}") # Terminal Interface st.subheader("Terminal") terminal_input = st.text_input("Enter a command:") if st.button("Run"): terminal_output = terminal_interface(terminal_input) st.session_state.terminal_history.append((terminal_input, terminal_output)) st.code(terminal_output, language="bash") # Code Editor Interface st.subheader("Code Editor") code_editor = st.text_area("Write your code:", height=300) if st.button("Format & Lint"): formatted_code, lint_message = code_editor_interface(code_editor) st.code(formatted_code, language="python") st.info(lint_message) # Text Summarization Tool st.subheader("Summarize Text") text_to_summarize = st.text_area("Enter text to summarize:") if st.button("Summarize"): summary = summarize_text(text_to_summarize) st.write(f"Summary: {summary}") # Sentiment Analysis Tool st.subheader("Sentiment Analysis") sentiment_text = st.text_area("Enter text for sentiment analysis:") if st.button("Analyze Sentiment"): sentiment = sentiment_analysis(sentiment_text) st.write(f"Sentiment: {sentiment}") # Text Translation Tool (Code Translation) st.subheader("Translate Code") code_to_translate = st.text_area("Enter code to translate:") source_language = st.text_input("Enter source language (e.g. 'Python'):") target_language = st.text_input("Enter target language (e.g. 'JavaScript'):") if st.button("Translate Code"): # Use a Hugging Face translation model translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es") translated_code = translator(code_to_translate, target_lang=target_language)[0]['translation_text'] st.code(translated_code, language=target_language.lower()) # Code Generation st.subheader("Code Generation") code_idea = st.text_input("Enter your code idea:") if st.button("Generate Code"): # Use a Hugging Face code generation model generator = pipeline("text-generation", model="bigscience/T0_3B") generated_code = generator(code_idea, max_length=100, num_return_sequences=1, do_sample=True)[0]['generated_text'] st.code(generated_code, language="python") # Display Preset Commands st.subheader("Preset Commands") preset_commands = { "Create a new project": "create_project('project_name')", "Add code to workspace": "add_code_to_workspace('project_name', 'code', 'file_name')", "Run terminal command": "terminal_interface('command', 'project_name')", "Generate code": "generate_code('code_idea')", "Summarize text": "summarize_text('text')", "Analyze sentiment": "sentiment_analysis('text')", "Translate code": "translate_code('code', 'source_language', 'target_language')", } for command_name, command in preset_commands.items(): st.write(f"{command_name}: `{command}`") # Workspace Chat App elif app_mode == "Workspace Chat App": st.header("Workspace Chat App") # Project Workspace Creation st.subheader("Create a New Project") project_name = st.text_input("Enter project name:") if st.button("Create Project"): workspace_status = workspace_interface(project_name) st.success(workspace_status) # Add Code to Workspace st.subheader("Add Code to Workspace") code_to_add = st.text_area("Enter code to add to workspace:") file_name = st.text_input("Enter file name (e.g. 'app.py'):") if st.button("Add Code"): add_code_status = add_code_to_workspace(project_name, code_to_add, file_name) st.success(add_code_status) # Terminal Interface with Project Context st.subheader("Terminal (Workspace Context)") terminal_input = st.text_input("Enter a command within the workspace:") if st.button("Run Command"): terminal_output = terminal_interface(terminal_input, project_name) st.code(terminal_output, language="bash") # Chat Interface for Guidance st.subheader("Chat with CodeCraft for Guidance") chat_input = st.text_area("Enter your message for guidance:") if st.button("Get Guidance"): chat_response = chat_interface(chat_input) st.session_state.chat_history.append((chat_input, chat_response)) st.write(f"CodeCraft: {chat_response}") # Display Chat History st.subheader("Chat History") for user_input, response in st.session_state.chat_history: st.write(f"User: {user_input}") st.write(f"CodeCraft: {response}") # Display Terminal History st.subheader("Terminal History") for command, output in st.session_state.terminal_history: st.write(f"Command: {command}") st.code(output, language="bash") # Display Projects and Files st.subheader("Workspace Projects") for project, details in st.session_state.workspace_projects.items(): st.write(f"Project: {project}") for file in details['files']: st.write(f" - {file}") # Chat with AI Agents st.subheader("Chat with AI Agents") selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents) agent_chat_input = st.text_area("Enter your message for the agent:") if st.button("Send to Agent"): agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent) st.session_state.chat_history.append((agent_chat_input, agent_chat_response)) st.write(f"{selected_agent}: {agent_chat_response}") # Automate Build Process st.subheader("Automate Build Process") if st.button("Automate"): agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects) st.write("Autonomous Build Summary:") st.write(summary) st.write("Next Step:") st.write(next_step) # Display current state for debugging st.sidebar.subheader("Current State") st.sidebar.json(st.session_state.current_state)