from huggingface_hub import InferenceClient import gradio as gr import random import prompts client = InferenceClient( "mistralai/Mixtral-8x7B-Instruct-v0.1" ) def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt agents =[ "WEB_DEV", "AI_SYSTEM_PROMPT", "PYTHON_CODE_DEV", "CODE_REVIEW_ASSISTANT", "CONTENT_WRITER_EDITOR", #"SOCIAL_MEDIA_MANAGER", #"MEME_GENERATOR", "QUESTION_GENERATOR", #"IMAGE_GENERATOR", "HUGGINGFACE_FILE_DEV", ] def generate( prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, file=None ): seed = random.randint(1,1111111111111111) agent=prompts.WEB_DEV if agent_name == "WEB_DEV": agent = prompts.WEB_DEV_SYSTEM_PROMPT if agent_name == "CODE_REVIEW_ASSISTANT": agent = prompts.CODE_REVIEW_ASSISTANT if agent_name == "CONTENT_WRITER_EDITOR": agent = prompts.CONTENT_WRITER_EDITOR if agent_name == "SOCIAL_MEDIA_MANAGER": agent = prompts.SOCIAL_MEDIA_MANAGER if agent_name == "AI_SYSTEM_PROMPT": agent = prompts.AI_SYSTEM_PROMPT if agent_name == "PYTHON_CODE_DEV": agent = prompts.PYTHON_CODE_DEV #if agent_name == "MEME_GENERATOR": # agent = prompts.MEME_GENERATOR if agent_name == "QUESTION_GENERATOR": agent = prompts.QUESTION_GENERATOR #if agent_name == "IMAGE_GENERATOR": # agent = prompts.IMAGE_GENERATOR if agent_name == "HUGGINGFACE_FILE_DEV": agent = prompts.HUGGINGFACE_FILE_DEV system_prompt=agent temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=seed, ) # Process the uploaded file if file: file_content = file.read().decode("utf-8") prompt = f"Here's the file I uploaded: {file_content} \n{prompt}" formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output # This line should be indented at the same level as the 'for' loop return output additional_inputs=[ gr.Dropdown( label="Agents", choices=[s for s in agents], value=agents[0], interactive=True, ), gr.Textbox( label="System Prompt", max_lines=1, interactive=True, ), gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=1048*10, minimum=0, maximum=1000*10, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ), ] examples=[ ["Create a simple web application using Flask", agents[0], None, None, None, None, ], ["Generate a Python script to perform a linear regression analysis", agents[2], None, None, None, None, ], ["Create a Dockerfile for a Node.js application", agents[1], None, None, None, None, ], ["Write a shell script to automate the deployment of a web application to a server", agents[3], None, None, None, None, ], ["Generate a SQL query to retrieve the top 10 most popular products by sales", agents[4], None, None, None, None, ], ["Write a Python script to generate a random password with a given length and complexity", agents[2], None, None, None, None, ], ["Create a simple game in Unity using C#", agents[0], None, None, None, None, ], ["Generate a Java program to implement a binary search algorithm", agents[2], None, None, None, None, ], ["Write a shell script to monitor the CPU usage of a server", agents[1], None, None, None, None, ], ["Create a simple web application using React and Node.js", agents[0], None, None, None, None, ], ["Generate a Python script to perform a sentiment analysis on a given text", agents[2], None, None, None, None, ], ["Write a shell script to automate the backup of a MySQL database", agents[1], None, None, None, None, ], ["Create a simple game in Unreal Engine using C++", agents[3], None, None, None, None, ], ["Generate a Java program to implement a bubble sort algorithm", agents[2], None, None, None, None, ], ["Write a shell script to monitor the memory usage of a server", agents[1], None, None, None, None, ], ["Create a simple web application using Angular and Node.js", agents[0], None, None, None, None, ], ["Generate a Python script to perform a text classification on a given dataset", agents[2], None, None, None, None, ], ["Write a shell script to automate the installation of a software package on a server", agents[1], None, None, None, None, ], ["Create a simple game in Godot using GDScript", agents[3], None, None, None, None, ], ["Generate a Java program to implement a merge sort algorithm", agents[2], None, None, None, None, ], ["Write a shell script to automate the cleanup of temporary files on a server", agents[1], None, None, None, None, ], ] gr.ChatInterface( fn=generate, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), additional_inputs=additional_inputs, title="Mixtral 46.7B", examples=examples, concurrency_limit=20, ).launch(show_api=False)