__all__ = ['is_cat', 'learn', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf'] # Cell from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() # Cell learn = load_learner('model.pkl') # Cell categories = ('Dog', 'Cat') def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float, probs))) classify_image(im) # Cell image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.label() examples = ['dog.jpg', 'dog2.jpg', 'test3.jpg', 'test4.jpg', 'test5.jpg'] intf = gr.Interface(f=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)