import os import multiprocessing import concurrent.futures from langchain.document_loaders import TextLoader, DirectoryLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import FAISS from sentence_transformers import SentenceTransformer import faiss import torch import numpy as np from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig from datetime import datetime import json import gradio as gr import re # from unsloth import FastLanguageModel import transformers from transformers import BloomForCausalLM from transformers import BloomForTokenClassification from transformers import BloomForTokenClassification from transformers import BloomTokenizerFast import torch class DocumentRetrievalAndGeneration: def __init__(self, embedding_model_name, lm_model_id, data_folder): # hf_token = os.getenv('HF_TOKEN') hf="hf_VuNNBwnFqlcKzV" token="vCfLXEBxyAOftxvlWpwf" self.hf_token=hf+token # print(HF_TOKEN,hf_token) self.all_splits = self.load_documents(data_folder) self.embeddings = SentenceTransformer(embedding_model_name) self.cpu_index = self.create_faiss_index() self.llm = self.initialize_llm2(lm_model_id) def load_documents(self, folder_path): loader = DirectoryLoader(folder_path, loader_cls=TextLoader) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=250) all_splits = text_splitter.split_documents(documents) print('Length of documents:', len(documents)) print("LEN of all_splits", len(all_splits)) return all_splits def create_faiss_index(self): all_texts = [split.page_content for split in self.all_splits] embeddings = self.embeddings.encode(all_texts, convert_to_tensor=True).cpu().numpy() index = faiss.IndexFlatL2(embeddings.shape[1]) index.add(embeddings) return index def initialize_llm(self, model_id): bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config,token=self.hf_token) tokenizer = AutoTokenizer.from_pretrained(model_id) generate_text = pipeline( model=model, tokenizer=tokenizer, return_full_text=True, task='text-generation', temperature=0.6, max_new_tokens=256, ) return generate_text def initialize_llm2(self,model_id): client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # except: # try: # pipe = pipeline("text-generation", model="microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True) # except: # pipe = pipeline("text-generation", model="microsoft/Phi-3-mini-4k-instruct") # pipe = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.2") # model_name = "mistralai/Mistral-7B-Instruct-v0.2" # pipeline = transformers.pipeline( # "text-generation", # model=model_name, # model_kwargs={"torch_dtype": torch.bfloat16}, # device="cpu", # ) # return generate_text def generate_response_with_timeout(self, model_inputs): try: with concurrent.futures.ThreadPoolExecutor() as executor: future = executor.submit(self.llm.model.generate, model_inputs, max_new_tokens=1000, do_sample=True) generated_ids = future.result(timeout=800) # Timeout set to 60 seconds return generated_ids except concurrent.futures.TimeoutError: return "Text generation process timed out" raise TimeoutError("Text generation process timed out") def query_and_generate_response(self, query): query_embedding = self.embeddings.encode(query, convert_to_tensor=True).cpu().numpy() distances, indices = self.cpu_index.search(np.array([query_embedding]), k=5) content = "" # for idx in indices[0]: # content += "-" * 50 + "\n" # content += self.all_splits[idx].page_content + "\n" # distance=distances[0][idx] # print("CHUNK", idx) # print("Distance :",distance) # print(self.all_splits[idx].page_content) # print("############################") for idx in indices[0]: if idx < len(self.all_splits) and idx < len(distances[0]): content += "-" * 50 + "\n" content += self.all_splits[idx].page_content + "\n" distance = distances[0][idx] print("CHUNK", idx) print("Distance :", distance) print(self.all_splits[idx].page_content) print("############################") else: print(f"Index {idx} is out of bounds. Skipping.") # {query} prompt = f""" You are a knowledgeable assistant with access to a comprehensive database. I need you to answer my question and provide related information in a specific format. I have provided five relatable json files {content}, choose the most suitable chunks for answering the query Here's what I need: Include a final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point. content Here's my question: Query: Solution==> RETURN ONLY SOLUTION . IF THEIR IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS , RETURN " NO SOLUTION AVAILABLE" IF THE QUERY AND THE RETRIEVED CHUNKS DO NOT CORRELATE MEANINGFULLY, OR IF THE QUERY IS NOT RELEVANT TO TDA2 OR RELATED TOPICS, THEN "NO SOLUTION AVAILABLE." Example1 Query: "How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM", Solution: "To use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM, you need to modify the configuration file of the NDK application. Specifically, change the processor reference from 'A15_0' to 'IPU1_0'.", Example2 Query: "Can BQ25896 support I2C interface?", Solution: "Yes, the BQ25896 charger supports the I2C interface for communication." Example3 Query: "Who is the fastest runner in the world", Solution:"NO SOLUTION AVAILABLE" Example4 Query:"What is the price of latest apple MACBOOK " Solution:"NO SOLUTION AVAILABLE" """ messages = [{"role": "system", "content": prompt}] messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion(messages,max_tokens=2048,stream=True,temperature=0.7): token = message.choices[0].delta.content response += token # yield response generated_response=response # messages = [{"role": "user", "content": prompt}] # encodeds = self.llm.tokenizer.apply_chat_template(messages, return_tensors="pt") # model_inputs = encodeds.to(self.llm.device) # start_time = datetime.now() # generated_ids = self.generate_response_with_timeout(model_inputs) # elapsed_time = datetime.now() - start_time # decoded = self.llm.tokenizer.batch_decode(generated_ids) # generated_response = decoded[0] ######################################################### # messages = [] # # Check if history is None or empty and handle accordingly # if history: # for user_msg, assistant_msg in history: # messages.append({"role": "user", "content": user_msg}) # messages.append({"role": "assistant", "content": assistant_msg}) # # Always add the current user message # messages.append({"role": "user", "content": message}) # # Construct the prompt using the pipeline's tokenizer # prompt = pipeline.tokenizer.apply_chat_template( # messages, # tokenize=False, # add_generation_prompt=True # ) # # Generate the response # terminators = [ # pipeline.tokenizer.eos_token_id, # pipeline.tokenizer.convert_tokens_to_ids("") # ] # # Adjust the temperature slightly above given to ensure variety # adjusted_temp = temperature + 0.1 # # Generate outputs with adjusted parameters # outputs = pipeline( # prompt, # max_new_tokens=max_new_tokens, # do_sample=True, # temperature=adjusted_temp, # top_p=0.9 # ) # # Extract the generated text, skipping the length of the prompt # generated_text = outputs[0]["generated_text"] # generated_response = generated_text[len(prompt):] match1 = re.search(r'\[/INST\](.*?)', generated_response, re.DOTALL) match2 = re.search(r'Solution:(.*?)', generated_response, re.DOTALL | re.IGNORECASE) if match1: solution_text = match1.group(1).strip() if "Solution:" in solution_text: solution_text = solution_text.split("Solution:", 1)[1].strip() elif match2: solution_text = match2.group(1).strip() else: solution_text=generated_response print("Generated response:", generated_response) print("Time elapsed:", elapsed_time) print("Device in use:", self.llm.device) return solution_text, content def qa_infer_gradio(self, query): response = self.query_and_generate_response(query) return response if __name__ == "__main__": print("starting...") embedding_model_name = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L12' # lm_model_id = "mistralai/Mistral-7B-Instruct-v0.2" lm_model_id= "unsloth/Phi-3-mini-4k-instruct-bnb-4bit" data_folder = 'text_files' doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder) def launch_interface(): css_code = """ .gradio-container { background-color: #daccdb; } /* Button styling for all buttons */ button { background-color: #927fc7; /* Default color for all other buttons */ color: black; border: 1px solid black; padding: 10px; margin-right: 10px; font-size: 16px; /* Increase font size */ font-weight: bold; /* Make text bold */ } """ EXAMPLES = ["What are the main types of blood cancer, and how do they differ in terms of symptoms, progression, and treatment options? ", "What are the latest advancements in the treatment of blood cancer, and how do they improve patient outcomes compared to traditional therapies?", "How do genetic factors and environmental exposures contribute to the risk of developing blood cancer, and what preventive measures can be taken?"] interface = gr.Interface( fn=doc_retrieval_gen.qa_infer_gradio, inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")], allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs=[gr.Textbox(label="SOLUTION"), gr.Textbox(label="RELATED QUERIES")], css=css_code ) interface.launch(debug=True) launch_interface()