from PIL import Image import torch import gradio as gr model2 = torch.hub.load( "AK391/animegan2-pytorch:main", "generator", pretrained=True, device="cuda", progress=False ) model1 = torch.hub.load("AK391/animegan2-pytorch:main", "generator", pretrained="face_paint_512_v1", device="cuda") face2paint = torch.hub.load( 'AK391/animegan2-pytorch:main', 'face2paint', size=512, device="cuda",side_by_side=False ) def inference(img, ver): if ver == 'version 2 (🔺 robustness,🔻 stylization)': out = face2paint(model2, img) else: out = face2paint(model1, img) return out title = "AnimeGANv2" description = "Gradio Demo for AnimeGanv2 Face Portrait. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please use a cropped portrait picture for best results similar to the examples below." article = "
samples from repo:
" examples=[['groot.jpeg','version 2 (🔺 robustness,🔻 stylization)'],['bill.png','version 1 (🔺 stylization, 🔻 robustness)'],['tony.png','version 1 (🔺 stylization, 🔻 robustness)'],['elon.png','version 2 (🔺 robustness,🔻 stylization)'],['IU.png','version 1 (🔺 stylization, 🔻 robustness)'],['billie.png','version 2 (🔺 robustness,🔻 stylization)'],['will.png','version 2 (🔺 robustness,🔻 stylization)'],['beyonce.png','version 1 (🔺 stylization, 🔻 robustness)'],['gongyoo.jpeg','version 1 (🔺 stylization, 🔻 robustness)']] gr.Interface(inference, [gr.inputs.Image(type="pil"),gr.inputs.Radio(['version 1 (🔺 stylization, 🔻 robustness)','version 2 (🔺 robustness,🔻 stylization)'], type="value", default='version 2 (🔺 robustness,🔻 stylization)', label='version') ], gr.outputs.Image(type="pil"),title=title,description=description,article=article,enable_queue=True,examples=examples,allow_flagging=False).launch()