import gradio as gr import CaptchaCracker as cc # Target image data size img_width = 200 img_height = 50 # Target image label length max_length = 6 # Target image label component characters = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9'} # Model weight file path weights_path = "weights.h5" # Creating a model application instance AM = cc.ApplyModel(weights_path, img_width, img_height, max_length, characters) def inference(target_img_path): # Predicted value pred = AM.predict(target_img_path) return pred block = gr.Blocks() with block: gr.Markdown("Gradio Demo for WooilJeong/CaptchaCracker") with gr.Tabs(): with gr.TabItem("CaptchaCracker"): with gr.Row(): captchaimg = gr.inputs.Image(type="filepath") text = gr.outputs.Textbox() catch_run = gr.Button("Run") catch_run.click(inference, inputs=captchaimg, outputs=text) block.launch()