import os, sys, json import gradio as gr import openai from openai import OpenAI import time from langchain.chains import LLMChain, RetrievalQA from langchain.chat_models import ChatOpenAI from langchain.document_loaders import PyPDFLoader, WebBaseLoader from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader from langchain.document_loaders.generic import GenericLoader from langchain.document_loaders.parsers import OpenAIWhisperParser from langchain.embeddings.openai import OpenAIEmbeddings from langchain.prompts import PromptTemplate from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma #from langchain.vectorstores import MongoDBAtlasVectorSearch #from pymongo import MongoClient from dotenv import load_dotenv, find_dotenv _ = load_dotenv(find_dotenv()) ################################################# #globale Variablen #nur bei ersten Anfrage splitten der Dokumente - um die Vektordatenbank entsprechend zu füllen splittet = False ################################################## #Für MongoDB statt Chroma als Vektorstore #MONGODB_URI = os.environ["MONGODB_ATLAS_CLUSTER_URI"] #client = MongoClient(MONGODB_URI) #MONGODB_DB_NAME = "langchain_db" #MONGODB_COLLECTION_NAME = "gpt-4" #MONGODB_COLLECTION = client[MONGODB_DB_NAME][MONGODB_COLLECTION_NAME] #MONGODB_INDEX_NAME = "default" ################################################# #Prompt Zusätze template = """Antworte in deutsch, wenn es nicht explizit anders gefordert wird. Wenn du die Antwort nicht kennst, antworte einfach, dass du es nicht weißt. Versuche nicht, die Antwort zu erfinden oder aufzumocken. Halte die Antwort so kurz aber exakt.""" llm_template = "Beantworte die Frage am Ende. " + template + "Frage: {question} Hilfreiche Antwort: " rag_template = "Nutze die folgenden Kontext Teile, um die Frage zu beantworten am Ende. " + template + "{context} Frage: {question} Hilfreiche Antwort: " ################################################# #Konstanten LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"], template = llm_template) RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], template = rag_template) OAI_API_KEY=os.getenv("OPENAI_API_KEY") #Pfad, wo Docs/Bilder/Filme abgelegt werden können - lokal, also hier im HF Space (sonst auf eigenem Rechner) PATH_WORK = "." CHROMA_DIR = "/chroma" YOUTUBE_DIR = "/youtube" ############################################### #URLs zu Dokumenten oder andere Inhalte, die einbezogen werden sollen PDF_URL = "https://arxiv.org/pdf/2303.08774.pdf" WEB_URL = "https://openai.com/research/gpt-4" YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE" YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE" YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ" ################################################ #LLM Model mit dem gearbeitet wird MODEL_NAME = "gpt-3.5-turbo-16k" #MODEL_NAME ="gpt-4" ################################################# #Funktionen zur Verarbeitung ################################################ def add_text(history, text): history = history + [(text, None)] return history, gr.Textbox(value="", interactive=False) def add_file(history, file): history = history + [((file.name,), None)] return history #die Inhalte splitten, um in Vektordatenbank entsprechend zu laden als Splits def document_loading_splitting(): global splittet # Document loading docs = [] # Load PDF loader = PyPDFLoader(PDF_URL) docs.extend(loader.load()) # Load Web loader = WebBaseLoader(WEB_URL) docs.extend(loader.load()) # Load YouTube loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1, YOUTUBE_URL_2, YOUTUBE_URL_3], PATH_WORK + YOUTUBE_DIR), OpenAIWhisperParser()) docs.extend(loader.load()) # Document splitting text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150, chunk_size = 1500) splits = text_splitter.split_documents(docs) #nur bei erster Anfrage mit "choma" wird gesplittet... splittet = True return splits #Chroma DB die splits ablegen - vektorisiert... def document_storage_chroma(splits): Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(disallowed_special = ()), persist_directory = PATH_WORK + CHROMA_DIR) #Mongo DB die splits ablegen - vektorisiert... def document_storage_mongodb(splits): MongoDBAtlasVectorSearch.from_documents(documents = splits, embedding = OpenAIEmbeddings(disallowed_special = ()), collection = MONGODB_COLLECTION, index_name = MONGODB_INDEX_NAME) #dokumente in chroma db vektorisiert ablegen können - die Db vorbereiten daüfur def document_retrieval_chroma(llm, prompt): embeddings = OpenAIEmbeddings() #Alternative Embedding - für Vektorstore, um Ähnlichkeitsvektoren zu erzeugen #embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"}) db = Chroma(embedding_function = embeddings, persist_directory = PATH_WORK + CHROMA_DIR) return db #dokumente in mongo db vektorisiert ablegen können - die Db vorbereiten daüfür def document_retrieval_mongodb(llm, prompt): db = MongoDBAtlasVectorSearch.from_connection_string(MONGODB_URI, MONGODB_DB_NAME + "." + MONGODB_COLLECTION_NAME, OpenAIEmbeddings(disallowed_special = ()), index_name = MONGODB_INDEX_NAME) return db ############################################### #Langchain anlegen #langchain nutzen, um prompt an LLM zu leiten - llm und prompt sind austauschbar def llm_chain(llm, prompt): llm_chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT) result = llm_chain.run({"question": prompt}) return result #langchain nutzen, um prompt an llm zu leiten, aber vorher in der VektorDB suchen, um passende splits zum Prompt hinzuzufügen def rag_chain(llm, prompt, db): rag_chain = RetrievalQA.from_chain_type(llm, chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT}, retriever = db.as_retriever(search_kwargs = {"k": 3}), return_source_documents = True) result = rag_chain({"query": prompt}) return result["result"] ################################################### #Funktion, die einen Prompt mit der history zusammen erzeugt def generate_prompt_with_history(text, history, max_length=2048): #prompt = "The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n[|Human|]Hello!\n[|AI|]Hi!" #prompt = "Das folgende ist eine Unterhaltung in deutsch zwischen einem Menschen und einem KI-Assistenten, der Baize genannt wird. Baize ist ein open-source KI-Assistent, der von UCSD entwickelt wurde. Der Mensch und der KI-Assistent chatten abwechselnd miteinander in deutsch. Die Antworten des KI Assistenten sind immer so ausführlich wie möglich und in Markdown Schreibweise und in deutscher Sprache. Wenn nötig übersetzt er sie ins Deutsche. Die Antworten des KI-Assistenten vermeiden Themen und Antworten zu unethischen, kontroversen oder sensiblen Themen. Die Antworten sind immer sehr höflich formuliert..\n[|Human|]Hallo!\n[|AI|]Hi!" prompt="" history = ["\n{}\n{}".format(x[0],x[1]) for x in history] history.append("\n{}\n".format(text)) history_text = "" flag = False for x in history[::-1]: history_text = x + history_text flag = True if flag: return prompt+history_text else: return None ################################################### #Funktion von Gradio aus, die den dort eingegebenen Prompt annimmt und weiterverarbeitet def invoke (prompt, history, openai_api_key, rag_option, temperature=0.9, max_new_tokens=512, top_p=0.6, repetition_penalty=1.3,): global splittet #Prompt an history anhängen und einen Text daraus machen history_text_und_prompt = generate_prompt_with_history(prompt, history) if (openai_api_key == "" or openai_api_key == "sk-"): #raise gr.Error("OpenAI API Key is required.") #eigenen OpenAI key nutzen openai_api_key= OAI_API_KEY if (rag_option is None): raise gr.Error("Retrieval Augmented Generation ist erforderlich.") if (prompt == ""): raise gr.Error("Prompt ist erforderlich.") try: #Anfrage an OpenAI llm = ChatOpenAI(model_name = MODEL_NAME, openai_api_key = openai_api_key, temperature = 0) #zusätzliche Dokumenten Splits aus DB zum Prompt hinzufügen (aus VektorDB - Chroma oder Mongo DB) if (rag_option == "Chroma"): #muss nur einmal ausgeführt werden... if not splittet: splits = document_loading_splitting() document_storage_chroma(splits) db = document_retrieval_chroma(llm, history_text_und_prompt) result = rag_chain(llm, history_text_und_prompt, db) elif (rag_option == "MongoDB"): #splits = document_loading_splitting() #document_storage_mongodb(splits) db = document_retrieval_mongodb(llm, history_text_und_prompt) result = rag_chain(llm, history_text_und_prompt, db) else: result = llm_chain(llm, history_text_und_prompt) except Exception as e: raise gr.Error(e) #Antwort als Stream ausgeben... for i in range(len(result)): time.sleep(0.05) yield result[: i+1] ################################################ #GUI ############################################### #Beschreibung oben in GUI ################################################ #GUI ############################################### #Beschreibung oben in GUI ########################################### title = "LLM mit RAG" description = """Überblick: Hier wird ein Large Language Model (LLM) mit Retrieval Augmented Generation (RAG) auf externen Daten demonstriert.\n\n Genauer: Folgende externe Daten sind als Beispiel gegeben: YouTube, PDF, and Web.
Alle neueren Datums!. \n\n """ css = """.toast-wrap { display: none !important } """ examples=[['Was ist ChtGPT-4?'],['schreibe ein Python Programm, dass die GPT-4 API aufruft.']] def vote(data: gr.LikeData): if data.liked: print("You upvoted this response: " + data.value) else: print("You downvoted this response: " + data.value) additional_inputs = [ gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1), #gr.Radio(["Off", "Chroma", "MongoDB"], label="Retrieval Augmented Generation", value = "Off"), gr.Radio(["Off", "Chroma"], label="Retrieval Augmented Generation", value = "Off"), gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Höhere Werte erzeugen diversere Antworten"), gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=4096, step=64, interactive=True, info="Maximale Anzahl neuer Tokens"), gr.Slider(label="Top-p (nucleus sampling)", value=0.6, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Höhere Werte verwenden auch Tokens mit niedrigerer Wahrscheinlichkeit."), gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens") ] chatbot_stream = gr.Chatbot() demo1 = gr.ChatInterface(fn=invoke, #additional_inputs = additional_inputs, title = "Generative AI - LLM & RAG", theme="soft", chatbot=chatbot_stream, retry_btn="Wiederholen", undo_btn="Letztes löschen", clear_btn="Verlauf löschen", additional_inputs=additional_inputs, description = description)#.queue().launch() with gr.Blocks() as demo: with gr.Tab("Chatbot"): chatbot_stream.like(vote, None, None) chat_interface_stream.render()