from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type import logging import json import os from datetime import datetime import hashlib import csv import requests import re import html import markdown2 import torch import sys import gc from pygments.lexers import guess_lexer, ClassNotFound import time import json import operator from typing import Annotated, Sequence, TypedDict import pprint import gradio as gr from pypinyin import lazy_pinyin import tiktoken import mdtex2html from markdown import markdown from pygments import highlight from pygments.lexers import guess_lexer,get_lexer_by_name from pygments.formatters import HtmlFormatter from langchain.chains import LLMChain, RetrievalQA from langchain_community.document_loaders import PyPDFLoader, UnstructuredWordDocumentLoader, DirectoryLoader #from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader #from langchain.document_loaders import GenericLoader from langchain.schema import AIMessage, HumanMessage from langchain_community.llms import HuggingFaceHub from langchain_community.llms import HuggingFaceTextGenInference #from langchain_community.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings from langchain_huggingface import HuggingFaceEmbeddings from langchain_community.tools import DuckDuckGoSearchRun from typing import Dict, TypedDict from langchain_core.messages import BaseMessage from langchain.prompts import PromptTemplate #from langchain import hub from langchain.prompts import PromptTemplate from langchain.schema import Document from langchain_community.vectorstores import Chroma from langchain_core.messages import BaseMessage, FunctionMessage from langchain_core.output_parsers import StrOutputParser from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import RunnablePassthrough from langchain_core.utils.function_calling import convert_to_openai_tool from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from chromadb.errors import InvalidDimensionException import io from PIL import Image, ImageDraw, ImageOps, ImageFont import base64 from tempfile import NamedTemporaryFile import nltk from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer, PorterStemmer from nltk.tokenize import RegexpTokenizer from transformers import BertModel, BertTokenizer from nltk.stem.snowball import SnowballStemmer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import numpy as np #für die Normalisierung nltk.download('punkt') nltk.download('stopwords') german_stopwords = set(stopwords.words('german')) #Konstanten ANZAHL_DOCS = 5 ################################################# #Gesetzte Werte für Pfade, Prompts und Keys.. ################################################# ################################################# #Prompt Zusätze template = """\Antworte in deutsch, wenn es nicht explizit anders gefordert wird. Wenn du die Antwort nicht kennst, antworte direkt, dass du es nicht weißt. Versuche nicht es zu umschreiben. Versuche nicht, die Antwort zu erfinden oder aufzumocken. Antworte nur zu dem mitgelieferten Text.""" llm_template = "Beantworte die Frage am Ende. " + template + "Frage: {question} " #nur für HF für Stichwotre bei chatverlauf llm_template2 = "Fasse folgenden Text als Überschrift mit maximal 3 Worten zusammen. Text: {question} " rag_template = "Nutze ausschließlich die folgenden Kontexte (Beginnend mit dem Wort 'Kontext:') aus Teilen aus den angehängten Dokumenten, um die Frage (Beginnend mit dem Wort 'Frage: ') am Ende zu beantworten. Wenn du die Frage aus dem folgenden Kontext nicht beantworten kannst, sage, dass du keine passende Antwort gefunden hast. Wenn du dich auf den angegebenen Kontext beziehst, gib unbedingt den Namen des Dokumentes an, auf den du dich beziehst." + template + "Kontext: {context} Frage: {question}" ################################################# #Konstanten LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"], template = llm_template) #nur für HF bei chatverlauf LLM_CHAIN_PROMPT2 = PromptTemplate(input_variables = ["question"], template = llm_template2) RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], template = rag_template) ################################################ #Pfad, wo Docs/Bilder/Filme abgelegt werden können - lokal, also hier im HF Space (sonst auf eigenem Rechner) PATH_WORK = "." CHROMA_DIR = "/chroma/kkg" CHROMA_PDF = './chroma/kkg/pdf' CHROMA_WORD = './chroma/kkg/word' CHROMA_EXCEL = './chroma/kkg/excel' YOUTUBE_DIR = "/youtube" HISTORY_PFAD = "/data/history" ############################################### #URLs zu Dokumenten oder andere Inhalte, die einbezogen werden sollen PDF_URL = "https://arxiv.org/pdf/2303.08774.pdf" WEB_URL = "https://openai.com/research/gpt-4" YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE" YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE" #YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ" #spezielle Webseiten als Datenbasis laden urls = [ "https://kkg.hamburg.de/unser-leitbild/" "https://kkg.hamburg.de/unsere-schulcharta/", "https://kkg.hamburg.de/koordination-unterrichtsentwicklung/", "https://kkg.hamburg.de/konzept-medien-und-it-am-kkg/", ] ################################################## #Normalisierung eines Prompts ################################################## def normalise_prompt (prompt): #alles Kleinbuchstaben prompt_klein =prompt.lower() #Word Tokenisation tokens = word_tokenize(prompt_klein) #Punktuierung entfernen tokens = [word for word in tokens if word.isalnum()] # Stop Word Entfernung tokens = [word for word in tokens if not word in german_stopwords] # 5. Lemmatisierung: Worte in Grundform bringen, um Text besser vergleichen zu können nltk.download('wordnet') lemmatizer = WordNetLemmatizer() tokens = [lemmatizer.lemmatize(word) for word in tokens] # 6. Handling Special Characters (Remove non-alphanumeric characters) tokens = [re.sub(r'\W+', '', word) for word in tokens] # 7. Spell Check (optional, using a library like pyspellchecker) from spellchecker import SpellChecker spell = SpellChecker() tokens = [spell.correction(word) for word in tokens] # Join tokens back to sentence normalized_prompt = ' '.join(tokens) print("normaiserd prompt..................................") print(normalized_prompt) return normalized_prompt #um ähnliche Wörter anhand ihres Wortstammes zu erkennen # Funktion zur Stemmatisierung des Textes def preprocess_text(text): if not text: return "" text = text.lower() tokenizer = RegexpTokenizer(r'\w+') word_tokens = tokenizer.tokenize(text) filtered_words = [word for word in word_tokens if word not in german_stopwords] stemmer = SnowballStemmer("german") stemmed_words = [stemmer.stem(word) for word in filtered_words] return " ".join(stemmed_words) # Funktion zur Bereinigung des Textes aus den Pdfs und Word Dokuemtne, um den Tokenizer nicht zu überfordern def clean_text(text): # Entfernen nicht druckbarer Zeichen text = re.sub(r'[^\x00-\x7F]+', ' ', text) # Ersetzen ungewöhnlicher Leerzeichen durch normale Leerzeichen text = re.sub(r'\s+', ' ', text) return text.strip() ################################################## #RAG Hilfsfunktionen - Dokumenten bearbeiten für Vektorstore ################################################## ################################################## # Funktion, um für einen best. File-typ ein directory-loader zu definieren def create_directory_loader(file_type, directory_path): #verscheidene Dokument loaders: loaders = { '.pdf': PyPDFLoader, '.word': UnstructuredWordDocumentLoader, } return DirectoryLoader( path=directory_path, glob=f"**/*{file_type}", loader_cls=loaders[file_type], ) ################################################ #die Inhalte splitten, um in Vektordatenbank entsprechend zu laden als Splits def document_loading_splitting(): ############################## # Document loading docs = [] # kreiere einen DirectoryLoader für jeden file type pdf_loader = create_directory_loader('.pdf', CHROMA_PDF) word_loader = create_directory_loader('.word', CHROMA_WORD) print("PDF Loader done............................") # Load the files pdf_documents = pdf_loader.load() word_documents = word_loader.load() #alle zusammen in docs... docs.extend(pdf_documents) docs.extend(word_documents) #andere loader... # Load PDF #loader = PyPDFLoader(PDF_URL) #docs.extend(loader.load()) # Load Web #loader = WebBaseLoader(WEB_URL) #docs.extend(loader.load()) # Load YouTube #loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1,YOUTUBE_URL_2], PATH_WORK + YOUTUBE_DIR), OpenAIWhisperParser()) #docs.extend(loader.load()) ################################ # Document splitting text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150, chunk_size = 1500) splits = text_splitter.split_documents(docs) return splits ########################################### #Chroma DB die splits ablegen - vektorisiert... def document_storage_chroma(splits): #HF embeddings-------------------------------------- vectorstore = Chroma.from_documents(documents = splits, embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False}), persist_directory = PATH_WORK + CHROMA_DIR) retriever = vectorstore.as_retriever(search_kwargs = {"k": ANZAHL_DOCS}) return vectorstore, retriever ############################################ #dokumente in chroma db vektorisiert ablegen können - die Db vorbereiten daüfur def document_retrieval_chroma(llm, prompt): #HF embeddings ----------------------------------- #Alternative Embedding - für Vektorstore, um Ähnlichkeitsvektoren zu erzeugen - die ...InstructEmbedding ist sehr rechenaufwendig #embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"}) #etwas weniger rechenaufwendig: embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False}) #ChromaDb um die embedings zu speichern db = Chroma(embedding_function = embeddings, persist_directory = PATH_WORK + CHROMA_DIR) return db ############################################ # rag_chain Alternative für RAg mit Bild-Upload, da hier das llm so nicht genutzt werden kann und der prompt mit den RAG Erweiterungen anders übergeben wird #langchain nutzen, um prompt an llm zu leiten, aber vorher in der VektorDB suchen, um passende splits zum Prompt hinzuzufügen #prompt mit RAG!!! def rag_chainback(prompt, db, k=3): rag_template = "Nutze ausschließlich die folgenden Kontext Teile am Ende, um die Frage zu beantworten . " + template + "Frage: " + prompt + "Kontext Teile: " retrieved_chunks = db.similarity_search(prompt, k) # Erstelle ein Dictionary für die Chunks chunks_dict = [] for i, chunk in enumerate(retrieved_chunks): chunk_dict = { "chunk_index": i + 1, "page_content": chunk.page_content, # assuming chunk has page_content attribute "metadata": chunk.metadata # assuming chunk has metadata attribute } chunks_dict.append(chunk_dict) # Erstelle das neue Prompt neu_prompt = rag_template for chunk in chunks_dict: neu_prompt += f"{chunk['chunk_index']}. {chunk['page_content']}\n" print("dict.............................."+ json.dumps(chunks_dict, indent=4, ensure_ascii=False)) return neu_prompt, chunks_dict # returning both the new prompt and the dictionary ############################################### #Langchain anlegen ############################################### #langchain nutzen, um prompt an LLM zu leiten - llm und prompt sind austauschbar def llm_chain(llm, prompt): llm_chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT) result = llm_chain.run({"question": prompt}) return result #nur für HF-um bei chatverlauf kurzbeschreibung zu erzeugen def llm_chain2(llm, prompt): llm_chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT2) result = llm_chain.run({"question": prompt}) return result ############################################# #langchain nutzen, um prompt an llm zu leiten, aber vorher in der VektorDB suchen, um passende splits zum Prompt hinzuzufügen def rag_chain(llm, prompt, retriever): #Langgraph nutzen für ein wenig mehr Intelligenz beim Dokumente suchen relevant_docs=[] filtered_docs=[] relevant_docs = retriever.get_relevant_documents(prompt) print("releant docs1......................") print(relevant_docs) if (len(relevant_docs)>0): filtered_docs = grade_documents_direct(prompt, relevant_docs) neu_prompt=prompt if (len(filtered_docs)<2): #frage neu formulieren relevant_docs=[] neu_prompt = transform_query_direct(prompt) relevant_docs = retriever.get_relevant_documents(neu_prompt) if (len(relevant_docs)>0): print("releant docs2......................") print(relevant_docs) filtered_docs = grade_documents_direct(neu_prompt, relevant_docs) if (len(filtered_docs)>0): llm_chain = LLMChain(llm = llm, prompt = RAG_CHAIN_PROMPT) result = llm_chain.run({"context": filtered_docs, "question": neu_prompt}) else: #Normale Abfrage, da keine relevanten Dokumente gefunden llm_chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT) result = llm_chain.run({"question": neu_prompt}) return result ################################################### #Prompts mit History erzeugen für verschiednee Modelle ################################################### #Funktion, die einen Prompt mit der history zusammen erzeugt - allgemein def generate_prompt_with_history(text, history, max_length=4048): #prompt = "The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n[|Human|]Hello!\n[|AI|]Hi!" #prompt = "Das folgende ist eine Unterhaltung in deutsch zwischen einem Menschen und einem KI-Assistenten, der Baize genannt wird. Baize ist ein open-source KI-Assistent, der von UCSD entwickelt wurde. Der Mensch und der KI-Assistent chatten abwechselnd miteinander in deutsch. Die Antworten des KI Assistenten sind immer so ausführlich wie möglich und in Markdown Schreibweise und in deutscher Sprache. Wenn nötig übersetzt er sie ins Deutsche. Die Antworten des KI-Assistenten vermeiden Themen und Antworten zu unethischen, kontroversen oder sensiblen Themen. Die Antworten sind immer sehr höflich formuliert..\n[|Human|]Hallo!\n[|AI|]Hi!" prompt="" history = ["\n{}\n{}".format(x[0],x[1]) for x in history] history.append("\n{}\n".format(text)) history_text = "" flag = False for x in history[::-1]: history_text = x + history_text flag = True print("hist+prompt: ") print(history_text) if flag: return prompt+history_text else: return None ############################################# #Prompt und History für Hugging Face Schnittstelle def generate_prompt_with_history_hf(prompt, history): history_transformer_format = history + [[prompt, ""]] #stop = StopOnTokens() messages = "".join(["".join(["\n:"+item[0], "\n:"+item[1]]) #curr_system_message + for item in history_transformer_format]) ########################################## #Hashing.... # Funktion zum Hashen des Eingabewerts def hash_input(input_string): return hashlib.sha256(input_string.encode()).hexdigest() ######################################## #zur Zeit nicht im Gebrauch def transfer_input(inputs): textbox = reset_textbox() return ( inputs, gr.update(value=""), gr.Button.update(visible=True), ) ################################################# #Klasse mit zuständen - z.B. für interrupt wenn Stop gedrückt... ################################################# class State: interrupted = False def interrupt(self): self.interrupted = True def recover(self): self.interrupted = False shared_state = State() def is_stop_word_or_prefix(s: str, stop_words: list) -> bool: for stop_word in stop_words: if s.endswith(stop_word): return True for i in range(1, len(stop_word)): if s.endswith(stop_word[:i]): return True return False