import os import json import streamlit as st from langchain_huggingface import HuggingFaceEmbeddings from langchain_chroma import Chroma from langchain_groq import ChatGroq from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from vectorize_documents import embeddings working_dir = os.path.dirname(os.path.abspath(__file__)) config_data = json.load(open(f"{working_dir}/config.json")) GROQ_API_KEY = config_data["GROQ_API_KEY"] os.environ["GROQ_API_KEY"] = GROQ_API_KEY def setup_vectorstore(): persist_directory = f"{working_dir}/vector_db_dir" embedddings = HuggingFaceEmbeddings() vectorstore = Chroma(persist_directory=persist_directory, embedding_function=embeddings) return vectorstore def chat_chain(vectorstore): llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0) retriever = vectorstore.as_retriever() memory = ConversationBufferMemory( llm=llm, output_key="answer", memory_key="chat_history", return_messages=True ) chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=retriever, chain_type="stuff", memory=memory, verbose=True, return_source_documents=True ) return chain st.set_page_config( page_title="Trimatrix Technology", page_icon = "🛣️", layout="centered" ) st.title("AI Travel Assistant TriMatrix Technologies 🛣️") if "chat_history" not in st.session_state: st.session_state.chat_history = [] if "vectorstore" not in st.session_state: st.session_state.vectorstore = setup_vectorstore() if "conversationsal_chain" not in st.session_state: st.session_state.conversationsal_chain = chat_chain(st.session_state.vectorstore) for message in st.session_state.chat_history: with st.chat_message(message["role"]): st.markdown(message["content"]) user_input = st.chat_input("Ask AI...") if user_input: st.session_state.chat_history.append({"role": "user", "content": user_input}) with st.chat_message("user"): st.markdown(user_input) with st.chat_message("assistant"): response = st.session_state.conversationsal_chain({"question": user_input}) assistant_response = response["answer"] st.markdown(assistant_response) st.session_state.chat_history.append({"role": "assistant", "content": assistant_response}) # main.py # Displaying main.py.