import warnings warnings.filterwarnings('ignore') import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from matplotlib.colors import ListedColormap from sklearn.model_selection import train_test_split from scipy.stats import boxcox from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.model_selection import GridSearchCV, StratifiedKFold from sklearn.metrics import classification_report, accuracy_score from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier %matplotlib inline # Set the resolution of the plotted figures plt.rcParams['figure.dpi'] = 200 # Configure Seaborn plot styles: Set background color and use dark grid sns.set(rc={'axes.facecolor': '#faded9'}, style='darkgrid') df = pd.read_csv("/content/heart.csv") df df.info() # Define the continuous features continuous_features = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak'] # Identify the features to be converted to object data type features_to_convert = [feature for feature in df.columns if feature not in continuous_features] # Convert the identified features to object data type df[features_to_convert] = df[features_to_convert].astype('object') df.dtypes # Get the summary statistics for numerical variables df.describe().T # Get the summary statistics for categorical variables df.describe(include='object') # Filter out continuous features for the univariate analysis df_continuous = df[continuous_features] # Set up the subplot fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(15, 10)) # Loop to plot histograms for each continuous feature for i, col in enumerate(df_continuous.columns): x = i // 3 y = i % 3 values, bin_edges = np.histogram(df_continuous[col], range=(np.floor(df_continuous[col].min()), np.ceil(df_continuous[col].max()))) graph = sns.histplot(data=df_continuous, x=col, bins=bin_edges, kde=True, ax=ax[x, y], edgecolor='none', color='red', alpha=0.6, line_kws={'lw': 3}) ax[x, y].set_xlabel(col, fontsize=15) ax[x, y].set_ylabel('Count', fontsize=12) ax[x, y].set_xticks(np.round(bin_edges, 1)) ax[x, y].set_xticklabels(ax[x, y].get_xticks(), rotation=45) ax[x, y].grid(color='lightgrey') for j, p in enumerate(graph.patches): ax[x, y].annotate('{}'.format(p.get_height()), (p.get_x() + p.get_width() / 2, p.get_height() + 1), ha='center', fontsize=10, fontweight="bold") textstr = '\n'.join(( r'$\mu=%.2f$' % df_continuous[col].mean(), r'$\sigma=%.2f$' % df_continuous[col].std() )) ax[x, y].text(0.75, 0.9, textstr, transform=ax[x, y].transAxes, fontsize=12, verticalalignment='top', color='white', bbox=dict(boxstyle='round', facecolor='#ff826e', edgecolor='white', pad=0.5)) ax[1,2].axis('off') plt.suptitle('Distribution of Continuous Variables', fontsize=20) plt.tight_layout() plt.subplots_adjust(top=0.92) plt.show() # Filter out categorical features for the univariate analysis categorical_features = df.columns.difference(continuous_features) df_categorical = df[categorical_features] # Set up the subplot for a 4x2 layout fig, ax = plt.subplots(nrows=5, ncols=2, figsize=(15, 18)) # Loop to plot bar charts for each categorical feature in the 4x2 layout for i, col in enumerate(categorical_features): row = i // 2 col_idx = i % 2 # Calculate frequency percentages value_counts = df[col].value_counts(normalize=True).mul(100).sort_values() # Plot bar chart value_counts.plot(kind='barh', ax=ax[row, col_idx], width=0.8, color='red') # Add frequency percentages to the bars for index, value in enumerate(value_counts): ax[row, col_idx].text(value, index, str(round(value, 1)) + '%', fontsize=15, weight='bold', va='center') ax[row, col_idx].set_xlim([0, 95]) ax[row, col_idx].set_xlabel('Frequency Percentage', fontsize=12) ax[row, col_idx].set_title(f'{col}', fontsize=20) ax[4,1].axis('off') plt.suptitle('Distribution of Categorical Variables', fontsize=22) plt.tight_layout() plt.subplots_adjust(top=0.95) plt.show() # Set color palette sns.set_palette(['#ff826e', 'red']) # Create the subplots fig, ax = plt.subplots(len(continuous_features), 2, figsize=(15,15), gridspec_kw={'width_ratios': [1, 2]}) # Loop through each continuous feature to create barplots and kde plots for i, col in enumerate(continuous_features): # Barplot showing the mean value of the feature for each target category graph = sns.barplot(data=df, x="target", y=col, ax=ax[i,0]) # KDE plot showing the distribution of the feature for each target category sns.kdeplot(data=df[df["target"]==0], x=col, fill=True, linewidth=2, ax=ax[i,1], label='0') sns.kdeplot(data=df[df["target"]==1], x=col, fill=True, linewidth=2, ax=ax[i,1], label='1') ax[i,1].set_yticks([]) ax[i,1].legend(title='Heart Disease', loc='upper right') # Add mean values to the barplot for cont in graph.containers: graph.bar_label(cont, fmt=' %.3g') # Set the title for the entire figure plt.suptitle('Continuous Features vs Target Distribution', fontsize=22) plt.tight_layout() plt.show() # Set color palette sns.set_palette(['#ff826e', 'red']) # Create the subplots fig, ax = plt.subplots(len(continuous_features), 2, figsize=(15,15), gridspec_kw={'width_ratios': [1, 2]}) # Loop through each continuous feature to create barplots and kde plots for i, col in enumerate(continuous_features): # Barplot showing the mean value of the feature for each target category graph = sns.barplot(data=df, x="target", y=col, ax=ax[i,0]) # KDE plot showing the distribution of the feature for each target category sns.kdeplot(data=df[df["target"]==0], x=col, fill=True, linewidth=2, ax=ax[i,1], label='0') sns.kdeplot(data=df[df["target"]==1], x=col, fill=True, linewidth=2, ax=ax[i,1], label='1') ax[i,1].set_yticks([]) ax[i,1].legend(title='Heart Disease', loc='upper right') # Add mean values to the barplot for cont in graph.containers: graph.bar_label(cont, fmt=' %.3g') # Set the title for the entire figure plt.suptitle('Continuous Features vs Target Distribution', fontsize=22) plt.tight_layout() plt.show() # Remove 'target' from the categorical_features categorical_features = [feature for feature in categorical_features if feature != 'target'] fig, ax = plt.subplots(nrows=2, ncols=4, figsize=(15,10)) for i,col in enumerate(categorical_features): # Create a cross tabulation showing the proportion of purchased and non-purchased loans for each category of the feature cross_tab = pd.crosstab(index=df[col], columns=df['target']) # Using the normalize=True argument gives us the index-wise proportion of the data cross_tab_prop = pd.crosstab(index=df[col], columns=df['target'], normalize='index') # Define colormap cmp = ListedColormap(['#ff826e', 'red']) # Plot stacked bar charts x, y = i//4, i%4 cross_tab_prop.plot(kind='bar', ax=ax[x,y], stacked=True, width=0.8, colormap=cmp, legend=False, ylabel='Proportion', sharey=True) # Add the proportions and counts of the individual bars to our plot for idx, val in enumerate([*cross_tab.index.values]): for (proportion, count, y_location) in zip(cross_tab_prop.loc[val],cross_tab.loc[val],cross_tab_prop.loc[val].cumsum()): ax[x,y].text(x=idx-0.3, y=(y_location-proportion)+(proportion/2)-0.03, s = f' {count}\n({np.round(proportion * 100, 1)}%)', color = "black", fontsize=9, fontweight="bold") # Add legend ax[x,y].legend(title='target', loc=(0.7,0.9), fontsize=8, ncol=2) # Set y limit ax[x,y].set_ylim([0,1.12]) # Rotate xticks ax[x,y].set_xticklabels(ax[x,y].get_xticklabels(), rotation=0) plt.suptitle('Categorical Features vs Target Stacked Barplots', fontsize=22) plt.tight_layout() plt.show() # Check for missing values in the dataset df.isnull().sum().sum() continuous_features Q1 = df[continuous_features].quantile(0.25) Q3 = df[continuous_features].quantile(0.75) IQR = Q3 - Q1 outliers_count_specified = ((df[continuous_features] < (Q1 - 1.5 * IQR)) | (df[continuous_features] > (Q3 + 1.5 * IQR))).sum() outliers_count_specified # Implementing one-hot encoding on the specified categorical features df_encoded = pd.get_dummies(df, columns=['cp', 'restecg', 'thal'], drop_first=True) # Convert the rest of the categorical variables that don't need one-hot encoding to integer data type features_to_convert = ['sex', 'fbs', 'exang', 'slope', 'ca', 'target'] for feature in features_to_convert: df_encoded[feature] = df_encoded[feature].astype(int) df_encoded.dtypes # Displaying the resulting DataFrame after one-hot encoding df_encoded.head() # Define the features (X) and the output labels (y) X = df_encoded.drop('target', axis=1) y = df_encoded['target'] # Splitting data into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0, stratify=y) continuous_features # Adding a small constant to 'oldpeak' to make all values positive X_train['oldpeak'] = X_train['oldpeak'] + 0.001 X_test['oldpeak'] = X_test['oldpeak'] + 0.001 # Checking the distribution of the continuous features fig, ax = plt.subplots(2, 5, figsize=(15,10)) # Original Distributions for i, col in enumerate(continuous_features): sns.histplot(X_train[col], kde=True, ax=ax[0,i], color='#ff826e').set_title(f'Original {col}') # Applying Box-Cox Transformation # Dictionary to store lambda values for each feature lambdas = {} for i, col in enumerate(continuous_features): # Only apply box-cox for positive values if X_train[col].min() > 0: X_train[col], lambdas[col] = boxcox(X_train[col]) # Applying the same lambda to test data X_test[col] = boxcox(X_test[col], lmbda=lambdas[col]) sns.histplot(X_train[col], kde=True, ax=ax[1,i], color='red').set_title(f'Transformed {col}') else: sns.histplot(X_train[col], kde=True, ax=ax[1,i], color='green').set_title(f'{col} (Not Transformed)') fig.tight_layout() plt.show() X_train.head() # Define the base DT model dt_base = DecisionTreeClassifier(random_state=0) def tune_clf_hyperparameters(clf, param_grid, X_train, y_train, scoring='recall', n_splits=3): ''' This function optimizes the hyperparameters for a classifier by searching over a specified hyperparameter grid. It uses GridSearchCV and cross-validation (StratifiedKFold) to evaluate different combinations of hyperparameters. The combination with the highest recall for class 1 is selected as the default scoring metric. The function returns the classifier with the optimal hyperparameters. ''' # Create the cross-validation object using StratifiedKFold to ensure the class distribution is the same across all the folds cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=0) # Create the GridSearchCV object clf_grid = GridSearchCV(clf, param_grid, cv=cv, scoring=scoring, n_jobs=-1) # Fit the GridSearchCV object to the training data clf_grid.fit(X_train, y_train) # Get the best hyperparameters best_hyperparameters = clf_grid.best_params_ # Return best_estimator_ attribute which gives us the best model that has been fitted to the training data return clf_grid.best_estimator_, best_hyperparameters # Hyperparameter grid for DT param_grid_dt = { 'criterion': ['gini', 'entropy'], 'max_depth': [2,3], 'min_samples_split': [2, 3, 4], 'min_samples_leaf': [1, 2] } # Call the function for hyperparameter tuning best_dt, best_dt_hyperparams = tune_clf_hyperparameters(dt_base, param_grid_dt, X_train, y_train) print('DT Optimal Hyperparameters: \n', best_dt_hyperparams) # Evaluate the optimized model on the train data print(classification_report(y_train, best_dt.predict(X_train))) # Evaluate the optimized model on the test data print(classification_report(y_test, best_dt.predict(X_test))) def evaluate_model(model, X_test, y_test, model_name): """ Evaluates the performance of a trained model on test data using various metrics. """ # Make predictions y_pred = model.predict(X_test) # Get classification report report = classification_report(y_test, y_pred, output_dict=True) # Extracting metrics metrics = { "precision_0": report["0"]["precision"], "precision_1": report["1"]["precision"], "recall_0": report["0"]["recall"], "recall_1": report["1"]["recall"], "f1_0": report["0"]["f1-score"], "f1_1": report["1"]["f1-score"], "macro_avg_precision": report["macro avg"]["precision"], "macro_avg_recall": report["macro avg"]["recall"], "macro_avg_f1": report["macro avg"]["f1-score"], "accuracy": accuracy_score(y_test, y_pred) } # Convert dictionary to dataframe df = pd.DataFrame(metrics, index=[model_name]).round(2) return df dt_evaluation = evaluate_model(best_dt, X_test, y_test, 'DT') dt_evaluation rf_base = RandomForestClassifier(random_state=0) param_grid_rf = { 'n_estimators': [10, 30, 50, 70, 100], 'criterion': ['gini', 'entropy'], 'max_depth': [2, 3, 4], 'min_samples_split': [2, 3, 4, 5], 'min_samples_leaf': [1, 2, 3], 'bootstrap': [True, False] } # Using the tune_clf_hyperparameters function to get the best estimator best_rf, best_rf_hyperparams = tune_clf_hyperparameters(rf_base, param_grid_rf, X_train, y_train) print('RF Optimal Hyperparameters: \n', best_rf_hyperparams) # Evaluate the optimized model on the train data print(classification_report(y_train, best_rf.predict(X_train))) # Evaluate the optimized model on the test data print(classification_report(y_test, best_rf.predict(X_test))) rf_evaluation = evaluate_model(best_rf, X_test, y_test, 'RF') rf_evaluation # Define the base KNN model and set up the pipeline with scaling knn_pipeline = Pipeline([ ('scaler', StandardScaler()), ('knn', KNeighborsClassifier()) ]) # Hyperparameter grid for KNN knn_param_grid = { 'knn__n_neighbors': list(range(1, 12)), 'knn__weights': ['uniform', 'distance'], 'knn__p': [1, 2] # 1: Manhattan distance, 2: Euclidean distance } # Hyperparameter tuning for KNN best_knn, best_knn_hyperparams = tune_clf_hyperparameters(knn_pipeline, knn_param_grid, X_train, y_train) print('KNN Optimal Hyperparameters: \n', best_knn_hyperparams) # Evaluate the optimized model on the train data print(classification_report(y_train, best_knn.predict(X_train))) # Evaluate the optimized model on the test data print(classification_report(y_test, best_knn.predict(X_test))) knn_evaluation = evaluate_model(best_knn, X_test, y_test, 'KNN') knn_evaluation svm_pipeline = Pipeline([ ('scaler', StandardScaler()), ('svm', SVC(probability=True)) ]) param_grid_svm = { 'svm__C': [0.0011, 0.005, 0.01, 0.05, 0.1, 1, 10, 20], 'svm__kernel': ['linear', 'rbf', 'poly'], 'svm__gamma': ['scale', 'auto', 0.1, 0.5, 1, 5], 'svm__degree': [2, 3, 4] } # Call the function for hyperparameter tuning best_svm, best_svm_hyperparams = tune_clf_hyperparameters(svm_pipeline, param_grid_svm, X_train, y_train) print('SVM Optimal Hyperparameters: \n', best_svm_hyperparams) # Evaluate the optimized model on the train data print(classification_report(y_train, best_svm.predict(X_train))) svm_evaluation = evaluate_model(best_svm, X_test, y_test, 'SVM') svm_evaluation # Concatenate the dataframes all_evaluations = [dt_evaluation, rf_evaluation, knn_evaluation, svm_evaluation] results = pd.concat(all_evaluations) # Sort by 'recall_1' results = results.sort_values(by='recall_1', ascending=False).round(2) results # Sort values based on 'recall_1' results.sort_values(by='recall_1', ascending=True, inplace=True) recall_1_scores = results['recall_1'] # Plot the horizontal bar chart fig, ax = plt.subplots(figsize=(12, 7), dpi=70) ax.barh(results.index, recall_1_scores, color='red') # Annotate the values and indexes for i, (value, name) in enumerate(zip(recall_1_scores, results.index)): ax.text(value + 0.01, i, f"{value:.2f}", ha='left', va='center', fontweight='bold', color='red', fontsize=15) ax.text(0.1, i, name, ha='left', va='center', fontweight='bold', color='white', fontsize=25) # Remove yticks ax.set_yticks([]) # Set x-axis limit ax.set_xlim([0, 1.2]) # Add title and xlabel plt.title("Recall for Positive Class across Models", fontweight='bold', fontsize=22) plt.xlabel('Recall Value', fontsize=16) plt.show() !pip install gradio import gradio as gr import numpy as np from sklearn.ensemble import RandomForestClassifier # Example: Define and train a Random Forest model model = RandomForestClassifier() # Dummy training data (replace with your actual data) X_train = np.random.rand(100, 13) # 100 samples, 12 features (one for each input) y_train = np.random.randint(2, size=100) # Binary target # Train the model model.fit(X_train, y_train) # Define the prediction function def predict(*inputs): try: # Convert inputs to a numpy array and reshape it to match the model's expected input shape input_array = np.array(inputs).reshape(1, -1) prediction = model.predict(input_array) # Make a prediction return str(prediction[0]) # Return the prediction (single value) as a string for display except Exception as e: return str(e) # Return any errors as a string (for debugging) # Define the features (input fields) for Gradio features = [ 'age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach', 'exang', 'oldpeak', 'slope', 'ca','thal' ] # Create Gradio input components (use gr.Number for numeric inputs) inputs = [gr.Number(label=feature, value=0) for feature in features] # Output component (show the prediction result) outputs = gr.Textbox(label="Prediction Output") # Create and launch the Gradio interface gr.Interface(fn=predict, inputs=inputs, outputs=outputs).launch()