import os import yaml import torch import torchvision from tqdm import tqdm from inference.utils import * from train import ControlNetCore, WurstCoreB import warnings warnings.filterwarnings("ignore") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class Upscale_CaseCade: def __init__(self) -> None: self.config_file = './configs/inference/controlnet_c_3b_sr.yaml' # SETUP STAGE C with open(self.config_file, "r", encoding="utf-8") as file: loaded_config = yaml.safe_load(file) self.core = ControlNetCore(config_dict=loaded_config, device=device, training=False) # SETUP STAGE B self.config_file_b = './configs/inference/stage_b_3b.yaml' with open(self.config_file_b, "r", encoding="utf-8") as file: self.config_file_b = yaml.safe_load(file) self.core_b = WurstCoreB(config_dict=self.config_file_b, device=device, training=False) self.extras = self.core.setup_extras_pre() self.models = self.core.setup_models(self.extras) self.models.generator.eval().requires_grad_(False) print("CONTROLNET READY") self.extras_b = self.core_b.setup_extras_pre() self.models_b = self.core_b.setup_models(self.extras_b, skip_clip=True) self.models_b = WurstCoreB.Models( **{**self.models_b.to_dict(), 'tokenizer': self.models.tokenizer, 'text_model': self.models.text_model} ) self.models_b.generator.eval().requires_grad_(False) print("STAGE B READY") def upscale_image(self,image_pil,scale_fator): batch_size = 1 cnet_override = None images = resize_image(image_pil).unsqueeze(0).expand(batch_size, -1, -1, -1) batch = {'images': images} with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.bfloat16): effnet_latents = self.core.encode_latents(batch, self.models, self.extras) effnet_latents_up = torch.nn.functional.interpolate(effnet_latents, scale_factor=scale_fator, mode="nearest") cnet = self.models.controlnet(effnet_latents_up) cnet_uncond = cnet cnet_input = torch.nn.functional.interpolate(images, scale_factor=scale_fator, mode="nearest") # cnet, cnet_input = core.get_cnet(batch, models, extras) # cnet_uncond = cnet og=show_images(batch['images'],return_images=True) upsclae=show_images(cnet_input,return_images=True) return og,upsclae