import torch import torchvision from torch import nn, optim from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPVisionModelWithProjection from warmup_scheduler import GradualWarmupScheduler import sys import os from dataclasses import dataclass from gdf import GDF, EpsilonTarget, CosineSchedule from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight from torchtools.transforms import SmartCrop from modules.effnet import EfficientNetEncoder from modules.stage_c import StageC from modules.stage_c import ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock from modules.previewer import Previewer from train.base import DataCore, TrainingCore from core import WarpCore from core.utils import EXPECTED, EXPECTED_TRAIN, load_or_fail from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.wrap import ModuleWrapPolicy from accelerate import init_empty_weights from accelerate.utils import set_module_tensor_to_device from contextlib import contextmanager class WurstCore(TrainingCore, DataCore, WarpCore): @dataclass(frozen=True) class Config(TrainingCore.Config, DataCore.Config, WarpCore.Config): # TRAINING PARAMS lr: float = EXPECTED_TRAIN warmup_updates: int = EXPECTED_TRAIN dtype: str = None # MODEL VERSION model_version: str = EXPECTED # 3.6B or 1B clip_image_model_name: str = 'openai/clip-vit-large-patch14' clip_text_model_name: str = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k' # CHECKPOINT PATHS effnet_checkpoint_path: str = EXPECTED previewer_checkpoint_path: str = EXPECTED generator_checkpoint_path: str = None # gdf customization adaptive_loss_weight: str = None @dataclass(frozen=True) class Models(TrainingCore.Models, DataCore.Models, WarpCore.Models): effnet: nn.Module = EXPECTED previewer: nn.Module = EXPECTED @dataclass(frozen=True) class Schedulers(WarpCore.Schedulers): generator: any = None @dataclass(frozen=True) class Extras(TrainingCore.Extras, DataCore.Extras, WarpCore.Extras): gdf: GDF = EXPECTED sampling_configs: dict = EXPECTED effnet_preprocess: torchvision.transforms.Compose = EXPECTED info: TrainingCore.Info config: Config def setup_extras_pre(self) -> Extras: gdf = GDF( schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]), input_scaler=VPScaler(), target=EpsilonTarget(), noise_cond=CosineTNoiseCond(), loss_weight=AdaptiveLossWeight() if self.config.adaptive_loss_weight is True else P2LossWeight(), ) sampling_configs = {"cfg": 5, "sampler": DDPMSampler(gdf), "shift": 1, "timesteps": 20} if self.info.adaptive_loss is not None: gdf.loss_weight.bucket_ranges = torch.tensor(self.info.adaptive_loss['bucket_ranges']) gdf.loss_weight.bucket_losses = torch.tensor(self.info.adaptive_loss['bucket_losses']) effnet_preprocess = torchvision.transforms.Compose([ torchvision.transforms.Normalize( mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225) ) ]) clip_preprocess = torchvision.transforms.Compose([ torchvision.transforms.Resize(224, interpolation=torchvision.transforms.InterpolationMode.BICUBIC), torchvision.transforms.CenterCrop(224), torchvision.transforms.Normalize( mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711) ) ]) if self.config.training: transforms = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Resize(self.config.image_size, interpolation=torchvision.transforms.InterpolationMode.BILINEAR, antialias=True), SmartCrop(self.config.image_size, randomize_p=0.3, randomize_q=0.2) ]) else: transforms = None return self.Extras( gdf=gdf, sampling_configs=sampling_configs, transforms=transforms, effnet_preprocess=effnet_preprocess, clip_preprocess=clip_preprocess ) def get_conditions(self, batch: dict, models: Models, extras: Extras, is_eval=False, is_unconditional=False, eval_image_embeds=False, return_fields=None): conditions = super().get_conditions( batch, models, extras, is_eval, is_unconditional, eval_image_embeds, return_fields=return_fields or ['clip_text', 'clip_text_pooled', 'clip_img'] ) return conditions def setup_models(self, extras: Extras) -> Models: dtype = getattr(torch, self.config.dtype) if self.config.dtype else torch.float32 # EfficientNet encoder effnet = EfficientNetEncoder() effnet_checkpoint = load_or_fail(self.config.effnet_checkpoint_path) effnet.load_state_dict(effnet_checkpoint if 'state_dict' not in effnet_checkpoint else effnet_checkpoint['state_dict']) effnet.eval().requires_grad_(False).to(self.device) del effnet_checkpoint # Previewer previewer = Previewer() previewer_checkpoint = load_or_fail(self.config.previewer_checkpoint_path) previewer.load_state_dict(previewer_checkpoint if 'state_dict' not in previewer_checkpoint else previewer_checkpoint['state_dict']) previewer.eval().requires_grad_(False).to(self.device) del previewer_checkpoint @contextmanager def dummy_context(): yield None loading_context = dummy_context if self.config.training else init_empty_weights # Diffusion models with loading_context(): generator_ema = None if self.config.model_version == '3.6B': generator = StageC() if self.config.ema_start_iters is not None: generator_ema = StageC() elif self.config.model_version == '1B': generator = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]]) if self.config.ema_start_iters is not None: generator_ema = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]]) else: raise ValueError(f"Unknown model version {self.config.model_version}") if self.config.generator_checkpoint_path is not None: if loading_context is dummy_context: generator.load_state_dict(load_or_fail(self.config.generator_checkpoint_path)) else: for param_name, param in load_or_fail(self.config.generator_checkpoint_path).items(): set_module_tensor_to_device(generator, param_name, "cpu", value=param) generator = generator.to(dtype).to(self.device) generator = self.load_model(generator, 'generator') if generator_ema is not None: if loading_context is dummy_context: generator_ema.load_state_dict(generator.state_dict()) else: for param_name, param in generator.state_dict().items(): set_module_tensor_to_device(generator_ema, param_name, "cpu", value=param) generator_ema = self.load_model(generator_ema, 'generator_ema') generator_ema.to(dtype).to(self.device).eval().requires_grad_(False) if self.config.use_fsdp: fsdp_auto_wrap_policy = ModuleWrapPolicy([ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock]) generator = FSDP(generator, **self.fsdp_defaults, auto_wrap_policy=fsdp_auto_wrap_policy, device_id=self.device) if generator_ema is not None: generator_ema = FSDP(generator_ema, **self.fsdp_defaults, auto_wrap_policy=fsdp_auto_wrap_policy, device_id=self.device) # CLIP encoders tokenizer = AutoTokenizer.from_pretrained(self.config.clip_text_model_name) text_model = CLIPTextModelWithProjection.from_pretrained(self.config.clip_text_model_name).requires_grad_(False).to(dtype).to(self.device) image_model = CLIPVisionModelWithProjection.from_pretrained(self.config.clip_image_model_name).requires_grad_(False).to(dtype).to(self.device) return self.Models( effnet=effnet, previewer=previewer, generator=generator, generator_ema=generator_ema, tokenizer=tokenizer, text_model=text_model, image_model=image_model ) def setup_optimizers(self, extras: Extras, models: Models) -> TrainingCore.Optimizers: optimizer = optim.AdamW(models.generator.parameters(), lr=self.config.lr) # , eps=1e-7, betas=(0.9, 0.95)) optimizer = self.load_optimizer(optimizer, 'generator_optim', fsdp_model=models.generator if self.config.use_fsdp else None) return self.Optimizers(generator=optimizer) def setup_schedulers(self, extras: Extras, models: Models, optimizers: TrainingCore.Optimizers) -> Schedulers: scheduler = GradualWarmupScheduler(optimizers.generator, multiplier=1, total_epoch=self.config.warmup_updates) scheduler.last_epoch = self.info.total_steps return self.Schedulers(generator=scheduler) # Training loop -------------------------------- def forward_pass(self, data: WarpCore.Data, extras: Extras, models: Models): batch = next(data.iterator) with torch.no_grad(): conditions = self.get_conditions(batch, models, extras) latents = self.encode_latents(batch, models, extras) noised, noise, target, logSNR, noise_cond, loss_weight = extras.gdf.diffuse(latents, shift=1, loss_shift=1) with torch.cuda.amp.autocast(dtype=torch.bfloat16): pred = models.generator(noised, noise_cond, **conditions) loss = nn.functional.mse_loss(pred, target, reduction='none').mean(dim=[1, 2, 3]) loss_adjusted = (loss * loss_weight).mean() / self.config.grad_accum_steps if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight): extras.gdf.loss_weight.update_buckets(logSNR, loss) return loss, loss_adjusted def backward_pass(self, update, loss, loss_adjusted, models: Models, optimizers: TrainingCore.Optimizers, schedulers: Schedulers): if update: loss_adjusted.backward() grad_norm = nn.utils.clip_grad_norm_(models.generator.parameters(), 1.0) optimizers_dict = optimizers.to_dict() for k in optimizers_dict: if k != 'training': optimizers_dict[k].step() schedulers_dict = schedulers.to_dict() for k in schedulers_dict: if k != 'training': schedulers_dict[k].step() for k in optimizers_dict: if k != 'training': optimizers_dict[k].zero_grad(set_to_none=True) self.info.total_steps += 1 else: loss_adjusted.backward() grad_norm = torch.tensor(0.0).to(self.device) return grad_norm def models_to_save(self): return ['generator', 'generator_ema'] def encode_latents(self, batch: dict, models: Models, extras: Extras) -> torch.Tensor: images = batch['images'].to(self.device) return models.effnet(extras.effnet_preprocess(images)) def decode_latents(self, latents: torch.Tensor, batch: dict, models: Models, extras: Extras) -> torch.Tensor: return models.previewer(latents) if __name__ == '__main__': print("Launching Script") warpcore = WurstCore( config_file_path=sys.argv[1] if len(sys.argv) > 1 else None, device=torch.device(int(os.environ.get("SLURM_LOCALID"))) ) # core.fsdp_defaults['sharding_strategy'] = ShardingStrategy.NO_SHARD # RUN TRAINING warpcore()