import streamlit as st st.set_page_config(page_title="Turkish Review Analysis - via AG", page_icon='📖') st.header("📖Movie Review Analysis - TR") with st.sidebar: hf_key = st.text_input("HuggingFace Access Key", key="hf_key", type="password") MODEL_MOVIE = { "albert": "anilguven/albert_tr_turkish_movie_reviews", # Add the emoji for the Meta-Llama model "distilbert": "anilguven/distilbert_tr_turkish_movie_reviews", "bert": "anilguven/bert_tr_turkish_movie_reviews", "electra": "anilguven/electra_tr_turkish_movie_reviews", } MODEL_MOVIES = ["albert","distilbert","bert","electra"] # Use a pipeline as a high-level helper from transformers import pipeline # Create a mapping from formatted model names to their original identifiers def format_model_name(model_key): name_parts = model_key formatted_name = ''.join(name_parts) # Join them into a single string with title case return formatted_name formatted_names_to_identifiers = { format_model_name(key): key for key in MODEL_MOVIE.keys() } with st.expander("About this app"): st.write(f""" 1-Choose your model for movie review analysis (negative or positive).\n 2-Enter your sample text.\n 3-And model predict your text's result. """) # Debug to ensure names are formatted correctly #st.write("Formatted Model Names to Identifiers:", formatted_names_to_identifiers) model_name: str = st.selectbox("Model", options=MODEL_MOVIES) selected_model = MODEL_MOVIE[model_name] if not hf_key: st.info("Please add your HuggingFace Access Key to continue.") st.stop() access_token = hf_key pipe = pipeline("text-classification", model=selected_model, token=access_token) #from transformers import AutoTokenizer, AutoModelForSequenceClassification #tokenizer = AutoTokenizer.from_pretrained(selected_model) #pipe = AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path=selected_model) comment = st.text_input("Enter your text for analysis")#User input st.text('') if st.button("Submit for Analysis"):#User Review Button if not hf_key: st.info("Please add your HuggingFace Access Key to continue.") st.stop() else: result = pipe(comment)[0] label='' if result["label"] == "LABEL_0": label = "Negative" else: label = "Positive" st.text(label + " comment with " + str(result["score"]) + " accuracy")