import asyncio import json import os import pathlib import re import sqlite3 import subprocess import zipfile from typing import Any import pandas as pd from datasets import load_dataset from func_timeout import FunctionTimedOut, func_timeout from tqdm import tqdm from evaluation.utils.shared import ( EvalMetadata, EvalOutput, compatibility_for_eval_history_pairs, make_metadata, prepare_dataset, reset_logger_for_multiprocessing, run_evaluation, ) from openhands.controller.state.state import State from openhands.core.config import ( AppConfig, SandboxConfig, get_llm_config_arg, parse_arguments, ) from openhands.core.logger import openhands_logger as logger from openhands.core.main import create_runtime, run_controller from openhands.events.action import CmdRunAction, MessageAction from openhands.events.observation import CmdOutputObservation from openhands.runtime.base import Runtime from openhands.utils.async_utils import call_async_from_sync def codeact_user_response(state: State) -> str: msg = ( 'Please continue working on the task on whatever approach you think is suitable.\n' 'If you think you have completed the SQL, please finish the interaction using the "finish" tool.\n' 'IMPORTANT: YOU SHOULD NEVER ASK FOR HUMAN HELP OR USE THE INTERNET TO SOLVE THIS TASK.\n' ) if state.history: # check if the agent has tried to talk to the user 3 times, if so, let the agent know it can give up user_msgs = [ event for event in state.history if isinstance(event, MessageAction) and event.source == 'user' ] if len(user_msgs) > 2: # let the agent know that it can give up when it has tried 3 times return ( msg + 'If you want to give up, use the "finish" tool to finish the interaction.\n' ) return msg AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { 'CodeActAgent': codeact_user_response, } AGENT_CLS_TO_INST_SUFFIX = { 'CodeActAgent': 'When you think you have fixed the issue through code changes, please finish the interaction using the "finish" tool.\n' } def get_config( metadata: EvalMetadata, ) -> AppConfig: config = AppConfig( default_agent=metadata.agent_class, run_as_openhands=False, runtime='docker', max_iterations=metadata.max_iterations, sandbox=SandboxConfig( base_container_image='python:3.12-bookworm', enable_auto_lint=True, use_host_network=False, ), # do not mount workspace workspace_base=None, workspace_mount_path=None, ) config.set_llm_config(metadata.llm_config) agent_config = config.get_agent_config(metadata.agent_class) agent_config.enable_prompt_extensions = False return config def execute_sql(db_path, gen_sql, gold_sql): """Execute the generated SQL and the ground truth SQL and compare the results.""" with sqlite3.connect(db_path) as conn: cursor = conn.cursor() cursor.execute(gen_sql) predicted_res = cursor.fetchall() cursor.execute(gold_sql) ground_truth_res = cursor.fetchall() res = 0 if set(predicted_res) == set(ground_truth_res): res = 1 return res LOCAL_DATASET_PATH = os.path.join(os.path.dirname(__file__), 'data') def load_bird(): """Main function to handle the flow of downloading, processing, and loading the bird dataset.""" def _download_bird(): """Downloads and extracts the bird dataset from a specified URL into a local directory.""" devset_path = os.path.join(LOCAL_DATASET_PATH, 'dev') if not os.path.exists(devset_path): logger.info( f'{LOCAL_DATASET_PATH} folder does not exist, starting download and extraction...' ) os.makedirs(LOCAL_DATASET_PATH, exist_ok=True) download_url = 'https://bird-bench.oss-cn-beijing.aliyuncs.com/dev.zip' download_path = os.path.join(LOCAL_DATASET_PATH, 'dev.zip') if not os.path.exists(download_path): logger.info('Start Downloading...') subprocess.run(['wget', download_url, '-O', download_path]) logger.info('Download completed.') devset_path = os.path.join(LOCAL_DATASET_PATH, 'dev') if not os.path.exists(devset_path): logger.info('Start Extracting...') os.makedirs(devset_path, exist_ok=True) with zipfile.ZipFile(download_path, 'r') as zip_ref: zip_ref.extractall(devset_path) # move everything in 'dev_20240627' to the root folder for file in os.listdir(os.path.join(devset_path, 'dev_20240627')): os.rename( os.path.join(devset_path, 'dev_20240627', file), os.path.join(devset_path, file), ) os.rmdir(os.path.join(devset_path, 'dev_20240627')) logger.info('Extraction completed.') # extract databases database_path = os.path.join(devset_path, 'dev_databases.zip') assert os.path.exists(database_path) logger.info('Start Extracting...') with zipfile.ZipFile(database_path, 'r') as zip_ref: zip_ref.extractall(devset_path) logger.info('Extraction completed.') else: logger.info(f'{LOCAL_DATASET_PATH} folder already exists.') return devset_path def _extract_create_table_prompt(db_path, limit_value=0): """Generates a SQL prompt with CREATE TABLE statements and sample data from the database.""" table_query = "SELECT * FROM sqlite_master WHERE type='table';" tables = sqlite3.connect(db_path).cursor().execute(table_query).fetchall() prompt = '' for table in tables: table_name = table[1] create_table_statement = table[-1] table_info_query = f'PRAGMA table_info(`{table_name}`);' top_k_row_query = f'SELECT * FROM {table_name} LIMIT {limit_value};' try: headers = [ x[1] for x in sqlite3.connect(db_path) .cursor() .execute(table_info_query) .fetchall() ] except Exception: logger.error(f'Error Connection: {table_info_query}, {top_k_row_query}') exit(0) prompt += create_table_statement + ';\n' if limit_value > 0: top_k_rows = ( sqlite3.connect(db_path) .cursor() .execute(top_k_row_query) .fetchall() ) prompt += ( f"/*\n3 example rows:\n{top_k_row_query}\n{' '.join(headers)}\n" ) for row in top_k_rows: row = [str(x) for x in row] row = [x if x is not None else '' for x in row] prompt += ' '.join(row) + '\n' prompt += '*/\n' prompt += '\n' return prompt def _create_prompt(e, database_path): """Create a prompt for the given example""" db_id = e['db_id'] db_path = pathlib.Path(database_path) / db_id / f'{db_id}.sqlite' # Extract the CREATE TABLE statements and sample data from the database prompt = _extract_create_table_prompt(db_path) prompt += f"-- External Knowledge: {e['evidence']}\n\n" prompt += '-- Using valid SQLite and understanding External Knowledge, answer the following questions for the tables provided above.\n\n' prompt += '-- Using valid SQLite, answer the following questions for the tables provided above.\n' prompt += f"Question: {e['question']}\n" return prompt def _process_bird(dataset_path): """Processes the raw bird dataset into a structured format and saves it as JSON.""" processed_path = os.path.join(LOCAL_DATASET_PATH, 'dev', 'processed_dev.json') if not os.path.exists(processed_path): logger.info( f'{processed_path} folder does not exist, starting processing...' ) raw_data_path = os.path.join(LOCAL_DATASET_PATH, 'dev', 'dev.json') database_path = os.path.join(LOCAL_DATASET_PATH, 'dev', 'dev_databases') processed_data = [] with pathlib.Path(raw_data_path).open('r') as f: data = json.load(f) for e in tqdm(data): item = { 'instance_id': f'{len(processed_data)}', 'db_path': os.path.join( database_path, e['db_id'], f"{e['db_id']}.sqlite" ), 'db_id': e['db_id'], 'instruction': _create_prompt(e, database_path), 'SQL': e['SQL'], } processed_data.append(item) with pathlib.Path(processed_path).open('w') as f: json.dump(processed_data, f, indent=2) logger.info(f'Processed data saved to {processed_path}') else: logger.info(f'{processed_path} folder already exists.') bird_dataset = load_dataset('json', data_files={'test': processed_path}) return bird_dataset raw_dataset_path = _download_bird() bird_dataset = _process_bird(raw_dataset_path) return bird_dataset def initialize_runtime( runtime: Runtime, instance: pd.Series, # this argument is not required ): """Initialize the runtime for the agent. This function is called before the runtime is used to run the agent. """ logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}") obs: CmdOutputObservation # Copy the database to the workspace db_file = os.path.join( LOCAL_DATASET_PATH, 'dev', 'dev_databases', instance.db_id, f'{instance.db_id}.sqlite', ) runtime.copy_to(db_file, '/workspace') # Check the database is copied action = CmdRunAction(command='cd /workspace && ls -l') obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert obs.exit_code == 0 assert f'{instance.db_id}.sqlite' in obs.content logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}") def complete_runtime( runtime: Runtime, instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name ) -> dict[str, Any]: """Complete the runtime for the agent. This function is called before the runtime is used to run the agent. If you need to do something in the sandbox to get the correctness metric after the agent has run, modify this function. """ logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}") obs: CmdOutputObservation timeout = 30 test_result = {'result': {}, 'metadata': {}} # Read the generated python file instance_id = instance.instance_id.replace('/', '__') path = os.path.join('/workspace', f'{instance_id}.py') action = CmdRunAction(command=f'cat {path}') obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) if obs.exit_code != 0: test_result['result'] = {'passed': 0, 'status': 'error'} return test_result gen_file = obs.content.strip().replace('\r\n', '\n') # Extract the SQL from the python file gen_sql = '' pattern = r'sql\s*=\s*"([^"]+)"' match = re.search(pattern, gen_file) if match: gen_sql = match.group(1) else: print('No match found.') gold_sql = instance.SQL # Execute the SQL try: res = func_timeout( timeout, execute_sql, args=( instance.db_path, gen_sql, gold_sql, ), ) status = 'success' except FunctionTimedOut: res = 0 status = 'timeout' except Exception as e: res = 0 status = 'error' logger.error(f'Error: {e}') # Save the test result test_result['result'] = {'passed': res, 'status': status} test_result['metadata'] = { 'timeout': timeout, 'gen_sql': gen_sql, 'gold_sql': gold_sql, } logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}") return test_result def process_instance( instance: pd.Series, metadata: EvalMetadata, reset_logger: bool = True, ) -> EvalOutput: config = get_config(metadata) # use session id for concurrent evaluation instance_id = instance.instance_id.replace('/', '__') # Set up the logger properly, so you can run multi-processing to parallelize the evaluation if reset_logger: log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') reset_logger_for_multiprocessing(logger, instance_id, log_dir) else: logger.info(f'Starting evaluation for instance {instance_id}.') # Create file with BIRD instance database_path = os.path.join('/workspace', f'{instance.db_id}.sqlite') statements = f""" import sqlite3 def execute_sql(db_path, sql): with sqlite3.connect(db_path) as conn: cursor = conn.cursor() cursor.execute(sql) result = cursor.fetchall() return result if __name__ == '__main__': sql = "" # fill in your SQL here db_path = "{database_path}" print(db_path) result = execute_sql(db_path, sql) print(result) """ instruction = ( f'You are a SQL expert and need to complete the following text-to-SQL tasks.' f'\n\n{instance.instruction}\n\n' 'Please write the SQL in one line without line breaks.' f'And write a new python file named {instance_id}.py to call the SQL you wrote.' 'You need to follow the code template below:' f'\n\n{statements}\n\n' 'Environment has been set up for you to start working.' 'You may assume all necessary tools are installed.\n\n' ) instruction += ( 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n' 'You SHOULD INCLUDE PROPER INDENTATION in your edit commands.\n' ) # NOTE: You can actually set slightly different instruction for different agents instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class] runtime = create_runtime(config) call_async_from_sync(runtime.connect) initialize_runtime(runtime, instance) # Here's how you can run the agent (similar to the `main` function) and get the final task state state: State | None = asyncio.run( run_controller( config=config, initial_user_action=MessageAction(content=instruction), fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[ metadata.agent_class ], runtime=runtime, ) ) # ======= Attempt to evaluate the agent's edits ======= test_result = complete_runtime(runtime, instance) # If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction) # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation. if state is None: raise ValueError('State should not be None.') metrics = state.metrics.get() if state.metrics else None # history is now available as a stream of events, rather than list of pairs of (Action, Observation) # for compatibility with the existing output format, we can remake the pairs here # remove when it becomes unnecessary histories = compatibility_for_eval_history_pairs(state.history) # Save the output output = EvalOutput( instance_id=instance.instance_id, instruction=instruction, metadata=metadata, history=histories, metrics=metrics, error=state.last_error if state and state.last_error else None, test_result=test_result, ) return output if __name__ == '__main__': args = parse_arguments() bird_dataset = load_bird() dataset = bird_dataset['test'].to_pandas() dataset.rename(columns={'task_id': 'instance_id'}, inplace=True) llm_config = None if args.llm_config: llm_config = get_llm_config_arg(args.llm_config) # modify_params must be False for evaluation purpose, for reproducibility and accurancy of results llm_config.modify_params = False if llm_config is None: raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') metadata = make_metadata( llm_config, 'BIRD', args.agent_cls, args.max_iterations, args.eval_note, args.eval_output_dir, ) output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') instances = prepare_dataset(dataset, output_file, args.eval_n_limit) run_evaluation( instances, metadata, output_file, args.eval_num_workers, process_instance )