import asyncio import json import os import tempfile from typing import Any import pandas as pd import toml from datasets import load_dataset import openhands.agenthub from evaluation.benchmarks.swe_bench.resource.mapping import ( get_instance_resource_factor, ) from evaluation.utils.shared import ( EvalException, EvalMetadata, EvalOutput, assert_and_raise, codeact_user_response, get_metrics, is_fatal_evaluation_error, make_metadata, prepare_dataset, reset_logger_for_multiprocessing, run_evaluation, update_llm_config_for_completions_logging, ) from openhands.controller.state.state import State from openhands.core.config import ( AgentConfig, AppConfig, SandboxConfig, get_llm_config_arg, get_parser, ) from openhands.core.logger import openhands_logger as logger from openhands.core.main import create_runtime, run_controller from openhands.events.action import CmdRunAction, MessageAction from openhands.events.observation import CmdOutputObservation, ErrorObservation from openhands.events.serialization.event import event_to_dict from openhands.runtime.base import Runtime from openhands.utils.async_utils import call_async_from_sync from openhands.utils.shutdown_listener import sleep_if_should_continue USE_HINT_TEXT = os.environ.get('USE_HINT_TEXT', 'false').lower() == 'true' USE_INSTANCE_IMAGE = os.environ.get('USE_INSTANCE_IMAGE', 'true').lower() == 'true' RUN_WITH_BROWSING = os.environ.get('RUN_WITH_BROWSING', 'false').lower() == 'true' AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { 'CodeActAgent': codeact_user_response, } def _get_swebench_workspace_dir_name(instance: pd.Series) -> str: return f'{instance.repo}__{instance.version}'.replace('/', '__') def get_instruction(instance: pd.Series, metadata: EvalMetadata): workspace_dir_name = _get_swebench_workspace_dir_name(instance) # Prepare instruction # Instruction based on Anthropic's official trajectory # https://github.com/eschluntz/swe-bench-experiments/tree/main/evaluation/verified/20241022_tools_claude-3-5-sonnet-updated/trajs instruction = ( '\n' f'/workspace/{workspace_dir_name}\n' '\n' f"I've uploaded a python code repository in the directory {workspace_dir_name}. Consider the following PR description:\n\n" f'\n' f'{instance.problem_statement}\n' '\n\n' 'Can you help me implement the necessary changes to the repository so that the requirements specified in the are met?\n' "I've already taken care of all changes to any of the test files described in the . This means you DON'T have to modify the testing logic or any of the tests in any way!\n" 'Your task is to make the minimal changes to non-tests files in the /workspace directory to ensure the is satisfied.\n' 'Follow these steps to resolve the issue:\n' '1. As a first step, it might be a good idea to explore the repo to familiarize yourself with its structure.\n' '2. Create a script to reproduce the error and execute it with `python ` using the BashTool, to confirm the error\n' '3. Edit the sourcecode of the repo to resolve the issue\n' '4. Rerun your reproduce script and confirm that the error is fixed!\n' '5. Think about edgecases and make sure your fix handles them as well\n' "Your thinking should be thorough and so it's fine if it's very long.\n" ) if RUN_WITH_BROWSING: instruction += ( '\n' 'You SHOULD NEVER attempt to browse the web. ' '\n' ) return instruction # TODO: migrate all swe-bench docker to ghcr.io/openhands DOCKER_IMAGE_PREFIX = os.environ.get('EVAL_DOCKER_IMAGE_PREFIX', 'docker.io/xingyaoww/') logger.info(f'Using docker image prefix: {DOCKER_IMAGE_PREFIX}') def get_instance_docker_image(instance_id: str) -> str: image_name = 'sweb.eval.x86_64.' + instance_id image_name = image_name.replace( '__', '_s_' ) # to comply with docker image naming convention return (DOCKER_IMAGE_PREFIX.rstrip('/') + '/' + image_name).lower() def get_config( instance: pd.Series, metadata: EvalMetadata, ) -> AppConfig: SWE_BENCH_CONTAINER_IMAGE = 'ghcr.io/opendevin/eval-swe-bench:full-v1.2.1' if USE_INSTANCE_IMAGE: # We use a different instance image for the each instance of swe-bench eval base_container_image = get_instance_docker_image(instance['instance_id']) logger.info( f'Using instance container image: {base_container_image}. ' f'Please make sure this image exists. ' f'Submit an issue on https://github.com/All-Hands-AI/OpenHands if you run into any issues.' ) else: base_container_image = SWE_BENCH_CONTAINER_IMAGE logger.info(f'Using swe-bench container image: {base_container_image}') config = AppConfig( default_agent=metadata.agent_class, run_as_openhands=False, max_iterations=metadata.max_iterations, runtime=os.environ.get('RUNTIME', 'docker'), sandbox=SandboxConfig( base_container_image=base_container_image, enable_auto_lint=True, use_host_network=False, # large enough timeout, since some testcases take very long to run timeout=300, # Add platform to the sandbox config to solve issue 4401 platform='linux/amd64', api_key=os.environ.get('ALLHANDS_API_KEY', None), remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'), keep_runtime_alive=False, remote_runtime_init_timeout=3600, remote_runtime_resource_factor=get_instance_resource_factor( dataset_name=metadata.dataset, instance_id=instance['instance_id'], ), ), # do not mount workspace workspace_base=None, workspace_mount_path=None, ) config.set_llm_config( update_llm_config_for_completions_logging( metadata.llm_config, metadata.eval_output_dir, instance['instance_id'] ) ) agent_config = AgentConfig( codeact_enable_jupyter=False, codeact_enable_browsing=RUN_WITH_BROWSING, codeact_enable_llm_editor=False, condenser=metadata.condenser_config, ) config.set_agent_config(agent_config) return config def initialize_runtime( runtime: Runtime, instance: pd.Series, # this argument is not required ): """Initialize the runtime for the agent. This function is called before the runtime is used to run the agent. """ logger.info('-' * 30) logger.info('BEGIN Runtime Initialization Fn') logger.info('-' * 30) workspace_dir_name = _get_swebench_workspace_dir_name(instance) obs: CmdOutputObservation # Set instance id action = CmdRunAction( command=f"""echo 'export SWE_INSTANCE_ID={instance['instance_id']}' >> ~/.bashrc && echo 'export PIP_CACHE_DIR=~/.cache/pip' >> ~/.bashrc && echo "alias git='git --no-pager'" >> ~/.bashrc""" ) action.set_hard_timeout(600) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert_and_raise( obs.exit_code == 0, f'Failed to export SWE_INSTANCE_ID: {str(obs)}' ) action = CmdRunAction(command="""export USER=$(whoami); echo USER=${USER} """) action.set_hard_timeout(600) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert_and_raise(obs.exit_code == 0, f'Failed to export USER: {str(obs)}') if USE_INSTANCE_IMAGE: # inject the init script script_dir = os.path.dirname(__file__) # inject the instance info action = CmdRunAction(command='mkdir -p /swe_util/eval_data/instances') action.set_hard_timeout(600) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert_and_raise( obs.exit_code == 0, f'Failed to create /swe_util/eval_data/instances: {str(obs)}', ) swe_instance_json_name = 'swe-bench-instance.json' with tempfile.TemporaryDirectory() as temp_dir: # Construct the full path for the desired file name within the temporary directory temp_file_path = os.path.join(temp_dir, swe_instance_json_name) # Write to the file with the desired name within the temporary directory with open(temp_file_path, 'w') as f: if not isinstance(instance, dict): json.dump([instance.to_dict()], f) else: json.dump([instance], f) # Copy the file to the desired location runtime.copy_to(temp_file_path, '/swe_util/eval_data/instances/') # inject the instance swe entry runtime.copy_to( str(os.path.join(script_dir, 'scripts/setup/instance_swe_entry.sh')), '/swe_util/', ) action = CmdRunAction(command='cat ~/.bashrc') action.set_hard_timeout(600) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert_and_raise(obs.exit_code == 0, f'Failed to cat ~/.bashrc: {str(obs)}') action = CmdRunAction(command='source ~/.bashrc') action.set_hard_timeout(600) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) if isinstance(obs, ErrorObservation): logger.error(f'Failed to source ~/.bashrc: {str(obs)}') assert_and_raise(obs.exit_code == 0, f'Failed to source ~/.bashrc: {str(obs)}') action = CmdRunAction(command='source /swe_util/instance_swe_entry.sh') action.set_hard_timeout(600) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert_and_raise( obs.exit_code == 0, f'Failed to source /swe_util/instance_swe_entry.sh: {str(obs)}', ) else: action = CmdRunAction(command='source /swe_util/swe_entry.sh') action.set_hard_timeout(1800) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert_and_raise( obs.exit_code == 0, f'Failed to source /swe_util/swe_entry.sh: {str(obs)}', ) action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}') action.set_hard_timeout(600) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert_and_raise( obs.exit_code == 0, f'Failed to cd to /workspace/{workspace_dir_name}: {str(obs)}', ) action = CmdRunAction(command='git reset --hard') action.set_hard_timeout(600) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert_and_raise(obs.exit_code == 0, f'Failed to git reset --hard: {str(obs)}') action = CmdRunAction( command='for remote_name in $(git remote); do git remote remove "${remote_name}"; done' ) action.set_hard_timeout(600) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert_and_raise(obs.exit_code == 0, f'Failed to remove git remotes: {str(obs)}') action = CmdRunAction(command='which python') action.set_hard_timeout(600) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert_and_raise( obs.exit_code == 0 and 'testbed' in obs.content, f'Expected to find python interpreter from testbed, but got: {str(obs)}', ) logger.info('-' * 30) logger.info('END Runtime Initialization Fn') logger.info('-' * 30) def complete_runtime( runtime: Runtime, instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name ) -> dict[str, Any]: """Complete the runtime for the agent. This function is called before the runtime is used to run the agent. If you need to do something in the sandbox to get the correctness metric after the agent has run, modify this function. """ logger.info('-' * 30) logger.info('BEGIN Runtime Completion Fn') logger.info('-' * 30) obs: CmdOutputObservation workspace_dir_name = _get_swebench_workspace_dir_name(instance) action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}') action.set_hard_timeout(600) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert_and_raise( isinstance(obs, CmdOutputObservation) and obs.exit_code == 0, f'Failed to cd to /workspace/{workspace_dir_name}: {str(obs)}', ) action = CmdRunAction(command='git config --global core.pager ""') action.set_hard_timeout(600) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert_and_raise( isinstance(obs, CmdOutputObservation) and obs.exit_code == 0, f'Failed to git config --global core.pager "": {str(obs)}', ) action = CmdRunAction(command='git add -A') action.set_hard_timeout(600) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert_and_raise( isinstance(obs, CmdOutputObservation) and obs.exit_code == 0, f'Failed to git add -A: {str(obs)}', ) n_retries = 0 git_patch = None while n_retries < 5: action = CmdRunAction( command=f'git diff --no-color --cached {instance["base_commit"]}' ) action.set_hard_timeout(max(300 + 100 * n_retries, 600)) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) n_retries += 1 if isinstance(obs, CmdOutputObservation): if obs.exit_code == 0: git_patch = obs.content.strip() break else: logger.info('Failed to get git diff, retrying...') sleep_if_should_continue(10) elif isinstance(obs, ErrorObservation): logger.error(f'Error occurred: {obs.content}. Retrying...') sleep_if_should_continue(10) else: assert_and_raise(False, f'Unexpected observation type: {str(obs)}') assert_and_raise(git_patch is not None, 'Failed to get git diff (None)') logger.info('-' * 30) logger.info('END Runtime Completion Fn') logger.info('-' * 30) return {'git_patch': git_patch} def process_instance( instance: pd.Series, metadata: EvalMetadata, reset_logger: bool = True, runtime_failure_count: int = 0, ) -> EvalOutput: config = get_config(instance, metadata) # Setup the logger properly, so you can run multi-processing to parallelize the evaluation if reset_logger: log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir) else: logger.info(f'Starting evaluation for instance {instance.instance_id}.') # Increase resource_factor with increasing attempt_id if runtime_failure_count > 0: config.sandbox.remote_runtime_resource_factor = min( config.sandbox.remote_runtime_resource_factor * (2**runtime_failure_count), 8, ) logger.warning( f'This is the {runtime_failure_count + 1}th attempt for instance {instance.instance_id}, setting resource factor to {config.sandbox.remote_runtime_resource_factor}' ) runtime = create_runtime(config) call_async_from_sync(runtime.connect) try: initialize_runtime(runtime, instance) instruction = get_instruction(instance, metadata) # Here's how you can run the agent (similar to the `main` function) and get the final task state state: State | None = asyncio.run( run_controller( config=config, initial_user_action=MessageAction(content=instruction), runtime=runtime, fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[ metadata.agent_class ], ) ) # if fatal error, throw EvalError to trigger re-run if is_fatal_evaluation_error(state.last_error): raise EvalException('Fatal error detected: ' + state.last_error) # ======= THIS IS SWE-Bench specific ======= # Get git patch return_val = complete_runtime(runtime, instance) git_patch = return_val['git_patch'] logger.info( f'Got git diff for instance {instance.instance_id}:\n--------\n{git_patch}\n--------' ) finally: runtime.close() # ========================================== # ======= Attempt to evaluate the agent's edits ======= # we use eval_infer.sh to evaluate the agent's edits, not here # because the agent may alter the environment / testcases test_result = { 'git_patch': git_patch, } # If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction) # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation. if state is None: raise ValueError('State should not be None.') # NOTE: this is NO LONGER the event stream, but an agent history that includes delegate agent's events histories = [event_to_dict(event) for event in state.history] metrics = get_metrics(state) # Save the output output = EvalOutput( instance_id=instance.instance_id, instruction=instruction, instance=instance.to_dict(), # SWE Bench specific test_result=test_result, metadata=metadata, history=histories, metrics=metrics, error=state.last_error if state and state.last_error else None, ) return output def filter_dataset(dataset: pd.DataFrame, filter_column: str) -> pd.DataFrame: file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.toml') if os.path.exists(file_path): with open(file_path, 'r') as file: data = toml.load(file) if 'selected_ids' in data: selected_ids = data['selected_ids'] logger.info( f'Filtering {len(selected_ids)} tasks from "selected_ids"...' ) subset = dataset[dataset[filter_column].isin(selected_ids)] logger.info(f'Retained {subset.shape[0]} tasks after filtering') return subset skip_ids = os.environ.get('SKIP_IDS', '').split(',') if len(skip_ids) > 0: logger.info(f'Filtering {len(skip_ids)} tasks from "SKIP_IDS"...') return dataset[~dataset[filter_column].isin(skip_ids)] return dataset if __name__ == '__main__': parser = get_parser() parser.add_argument( '--dataset', type=str, default='princeton-nlp/SWE-bench', help='data set to evaluate on, either full-test or lite-test', ) parser.add_argument( '--split', type=str, default='test', help='split to evaluate on', ) args, _ = parser.parse_known_args() # NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing # so we don't need to manage file uploading to OpenHands's repo dataset = load_dataset(args.dataset, split=args.split) swe_bench_tests = filter_dataset(dataset.to_pandas(), 'instance_id') logger.info( f'Loaded dataset {args.dataset} with split {args.split}: {len(swe_bench_tests)} tasks' ) llm_config = None if args.llm_config: llm_config = get_llm_config_arg(args.llm_config) llm_config.log_completions = True # modify_params must be False for evaluation purpose, for reproducibility and accurancy of results llm_config.modify_params = False if llm_config is None: raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') details = {} _agent_cls = openhands.agenthub.Agent.get_cls(args.agent_cls) dataset_descrption = ( args.dataset.replace('/', '__') + '-' + args.split.replace('/', '__') ) metadata = make_metadata( llm_config, dataset_descrption, args.agent_cls, args.max_iterations, args.eval_note, args.eval_output_dir, details=details, ) output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') print(f'### OUTPUT FILE: {output_file} ###') instances = prepare_dataset(swe_bench_tests, output_file, args.eval_n_limit) if len(instances) > 0 and not isinstance( instances['PASS_TO_PASS'][instances['PASS_TO_PASS'].index[0]], str ): for col in ['PASS_TO_PASS', 'FAIL_TO_PASS']: instances[col] = instances[col].apply(lambda x: str(x)) run_evaluation( instances, metadata, output_file, args.eval_num_workers, process_instance, timeout_seconds=120 * 60, # 2 hour PER instance should be more than enough max_retries=5, )