import asyncio import functools import json import os import tempfile from typing import Any import pandas as pd from datasets import load_dataset from evaluation.benchmarks.biocoder.utils import BiocoderData from evaluation.utils.shared import ( EvalMetadata, EvalOutput, codeact_user_response, compatibility_for_eval_history_pairs, make_metadata, prepare_dataset, reset_logger_for_multiprocessing, run_evaluation, ) from openhands.controller.state.state import State from openhands.core.config import ( AppConfig, SandboxConfig, get_llm_config_arg, parse_arguments, ) from openhands.core.logger import openhands_logger as logger from openhands.core.main import create_runtime, run_controller from openhands.events.action import CmdRunAction, MessageAction from openhands.events.observation import CmdOutputObservation from openhands.runtime.base import Runtime from openhands.utils.async_utils import call_async_from_sync AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { 'CodeActAgent': functools.partial( codeact_user_response, encapsulate_solution=True, try_parse=None ), } AGENT_CLS_TO_INST_SUFFIX = { 'CodeActAgent': 'When you think you have fixed the issue through code changes, please finish the interaction using the "finish" tool.\n' } FILE_EXT_MAP = { 'python': 'py', 'java': 'java', 'c': 'c', 'cpp': 'cpp', 'javascript': 'js', 'typescript': 'ts', } def get_config( metadata: EvalMetadata, ) -> AppConfig: BIOCODER_BENCH_CONTAINER_IMAGE = 'public.ecr.aws/i5g0m1f6/eval_biocoder:v1.0' config = AppConfig( default_agent=metadata.agent_class, run_as_openhands=False, runtime='docker', max_iterations=metadata.max_iterations, sandbox=SandboxConfig( base_container_image=BIOCODER_BENCH_CONTAINER_IMAGE, enable_auto_lint=True, use_host_network=False, ), # do not mount workspace workspace_base=None, workspace_mount_path=None, ) config.set_llm_config(metadata.llm_config) agent_config = config.get_agent_config(metadata.agent_class) agent_config.enable_prompt_extensions = False return config def initialize_runtime( runtime: Runtime, instance: BiocoderData, # this argument is not required ): """Initialize the runtime for the agent. This function is called before the runtime is used to run the agent. """ logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}") obs: CmdOutputObservation file_ext = FILE_EXT_MAP[instance.language.lower()] action = CmdRunAction(command='mkdir -p /workspace && mkdir -p /testing_files') logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) assert obs.exit_code == 0 with tempfile.TemporaryDirectory() as tmpdir: context_path = os.path.join(tmpdir, 'context.' + file_ext) with open(context_path, 'w') as f: f.write(instance.contextCode) runtime.copy_to(context_path, '/testing_files') golden_path = os.path.join(tmpdir, 'golden.' + file_ext) with open(golden_path, 'w') as f: f.write(instance.goldenCode) runtime.copy_to(golden_path, '/testing_files') testcase_json = { 'test_case_id': instance.test_case_id, 'num_cases': 1000, 'language': instance.language.lower(), } testcase_path = os.path.join(tmpdir, 'testcase_biocoder.json') with open(testcase_path, 'w') as f: f.write(json.dumps(testcase_json, indent=4)) runtime.copy_to(testcase_path, '/testing_files') # setup paths remove_code_script = os.path.join( os.path.dirname(__file__), 'scripts', 'setup', 'remove_code.py' ) runtime.copy_to(remove_code_script, '/testing_files') action = CmdRunAction(command='cd /workspace') logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) assert obs.exit_code == 0 # download repository archive repository_url = f"https://biocoder.lilbillbiscuit.com/repos/{instance.repository.split('/')[1]}.zip" action = CmdRunAction(command='wget -O repo.zip ' + repository_url) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) assert obs.exit_code == 0, f'Failed to download the repository: {obs.content}' # unzip the repository action = CmdRunAction(command='unzip -o -q repo.zip && rm repo.zip') logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) assert obs.exit_code == 0, f'Failed to unzip the repository: {obs.content}' # chmod 777 action = CmdRunAction(command='chmod -R 777 /workspace') logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) assert obs.exit_code == 0, f'Failed to chmod the files: {obs.content}' # remove code for evaluation instance target_filepath = os.path.join( '/workspace', instance.repository.split('/')[1], instance.filePath ) line_start = instance.lineStart line_end = instance.lineEnd language = instance.language.lower() action = CmdRunAction( command=f'python3 /testing_files/remove_code.py --target_filepath {target_filepath} --line_start {line_start} --line_end {line_end} --language {language}' ) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) assert obs.exit_code == 0, f'Failed to remove the code: {obs.content}' logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}") def complete_runtime( runtime: Runtime, instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name ) -> dict[str, Any]: """Complete the runtime for the agent. This function is called before the runtime is used to run the agent. If you need to do something in the sandbox to get the correctness metric after the agent has run, modify this function. """ logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}") obs: CmdOutputObservation test_result = {'result': {}, 'metadata': {}} copy_changed_code_script = os.path.join( os.path.dirname(__file__), 'scripts', 'setup', 'copy_changed_code.py' ) runtime.copy_to(copy_changed_code_script, '/testing_files') file_ext = FILE_EXT_MAP[instance.language.lower()] target_filepath = os.path.join( '/workspace', instance.repository.split('/')[1], instance.filePath ) generated_path = os.path.join('/testing_files', 'generated.' + file_ext) action = CmdRunAction( command=f'python3 /testing_files/copy_changed_code.py --target_filepath {target_filepath} --generated_code_filepath {generated_path} --line_start {instance.lineStart} --include_signature' ) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) if obs.exit_code == 0: test_result['metadata']['1_copy_change_success'] = True action = CmdRunAction(command=f'cat {generated_path}') logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) assert obs.exit_code == 0 code = obs.content test_result['metadata']['1_copy_change_code'] = code else: test_result['metadata']['1_copy_change_success'] = False test_result['metadata']['1_copy_change_code'] = None action = CmdRunAction(command='cd /testing_files') logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) assert obs.exit_code == 0 action = CmdRunAction( command='/home/openhands/mambaforge/bin/mamba run -n test python3 /testing/start_test_openhands.py' ) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert obs.exit_code == 0 action = CmdRunAction(command='cat /testing_files/results_biocoder.json') logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) if obs.exit_code == 0: test_result['metadata']['2_run_test_success'] = True test_result['metadata']['2_run_test_result'] = str(obs.content) json_obj = json.loads(obs.content) test_result['result'] = json_obj['result'] else: test_result['metadata']['2_run_test_success'] = False test_result['metadata']['2_run_test_result'] = str(obs.content) logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}") return test_result def process_instance( instance: pd.Series, metadata: EvalMetadata, reset_logger: bool = True, ) -> EvalOutput: config = get_config(metadata) instance = BiocoderData(**instance) print(instance) instance_id = f'{instance.repository}__{instance.instance_id[:10]}' # Setup the logger properly, so you can run multi-processing to parallelize the evaluation if reset_logger: log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') reset_logger_for_multiprocessing(logger, instance_id, log_dir) else: logger.info(f'Starting evaluation for instance {instance_id}.') # Prepare instruction instruction = ( f'Please complete the function "{instance.signature}" in the file /workspace/{instance.repository.split("/")[1]}/{instance.filePath}.\n' f'The environment has been set up for you to start working. You may assume all necessary tools are installed.\n' f'To complete the task, you must directly modify the file and fill in the function, keeping in mind that the function signature is on line {instance.lineStart-1}\n\n' f'The function should do the following:\n' f'{instance.promptSummaryOnly}\n\n' ) instruction += ( 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n' 'You should NOT modify any other files other than the file intended. This means that you should NOT write any test cases.\n' 'You may need context from other files in the repository to complete this task.' 'Do NOT add any import statements or change anything else other than the writing the function body.\n' 'You do not need to run the code to check if it works. \n' 'Make sure to include proper formatting in Java and Python, including correct braces and/or indentation.\n' ) # NOTE: You can actually set slightly different instruction for different agents instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class] runtime = create_runtime(config) call_async_from_sync(runtime.connect) initialize_runtime(runtime, instance) # Here's how you can run the agent (similar to the `main` function) and get the final task state state: State | None = asyncio.run( run_controller( config=config, initial_user_action=MessageAction(content=instruction), runtime=runtime, fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[ metadata.agent_class ], ) ) if state is None: raise ValueError('State should not be None.') test_result = complete_runtime(runtime, instance) metrics = state.metrics.get() if state.metrics else None # history is now available as a stream of events, rather than list of pairs of (Action, Observation) # for compatibility with the existing output format, we can remake the pairs here # remove when it becomes unnecessary histories = compatibility_for_eval_history_pairs(state.history) test_result['generated'] = test_result['metadata']['1_copy_change_code'] # Save the output output = EvalOutput( instance_id=instance.instance_id, instance=instance.to_dict(), instruction=instruction, metadata=metadata, history=histories, metrics=metrics, error=state.last_error if state and state.last_error else None, test_result=test_result, ) return output if __name__ == '__main__': args = parse_arguments() dataset = load_dataset('lilbillbiscuit/biocoder_public') biocoder_tests = dataset['train'].to_pandas() biocoder_tests['instance_id'] = biocoder_tests['test_case_id'] llm_config = None if args.llm_config: llm_config = get_llm_config_arg(args.llm_config) # modify_params must be False for evaluation purpose, for reproducibility and accurancy of results llm_config.modify_params = False if llm_config is None: raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') metadata = make_metadata( llm_config, 'biocoder', args.agent_cls, args.max_iterations, args.eval_note, args.eval_output_dir, ) output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') instances = prepare_dataset(biocoder_tests, output_file, args.eval_n_limit) run_evaluation( instances, metadata, output_file, args.eval_num_workers, process_instance )