import asyncio
import functools
import os
import re
import huggingface_hub
import pandas as pd
from datasets import load_dataset
from evaluation.benchmarks.gaia.scorer import question_scorer
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
codeact_user_response,
compatibility_for_eval_history_pairs,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import AgentFinishAction, CmdRunAction, MessageAction
from openhands.events.observation import CmdOutputObservation
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync
DATASET_CACHE_DIR = os.path.join(os.path.dirname(__file__), 'data')
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': functools.partial(codeact_user_response, encapsulate_solution=True),
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have solved the question, please first send your answer to user through message and then exit.\n'
}
def get_config(
metadata: EvalMetadata,
) -> AppConfig:
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime='docker',
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
base_container_image='python:3.12-bookworm',
enable_auto_lint=True,
use_host_network=False,
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
agent_config = config.get_agent_config(metadata.agent_class)
agent_config.enable_prompt_extensions = False
return config
def initialize_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required
):
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
obs: CmdOutputObservation
action = CmdRunAction(command='mkdir -p /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
if instance['file_name'] != '':
# if this question comes with a file, we need to save it to the workspace
assert metadata.data_split is not None
src_file = os.path.join(
DATASET_CACHE_DIR, '2023', metadata.data_split, instance['file_name']
)
assert os.path.exists(src_file)
dest_file = os.path.join('/workspace', instance['file_name'])
runtime.copy_to(src_file, dest_file)
# rename to file.extension_name
extension_name = instance['file_name'].split('.')[-1]
action = CmdRunAction(
command=f'mv /workspace/{instance["file_name"]} /workspace/file.{extension_name}'
)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
action = CmdRunAction(command='cd /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
) -> EvalOutput:
config = get_config(metadata)
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance['instance_id'], log_dir)
else:
logger.info(f'Starting evaluation for instance {instance["instance_id"]}.')
if instance['file_name'] != '':
extension_name = instance['file_name'].split('.')[-1]
dest_file = os.path.join('/workspace', f'file.{extension_name}')
else:
dest_file = None
# Prepare instruction
instruction = f"{instance['Question']}\n"
logger.info(f'Instruction: {instruction}')
if dest_file:
instruction += f"\n\nThe mentioned file is provided in the workspace at: {dest_file.split('/')[-1]}"
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
instruction += 'Please encapsulate your final answer (answer ONLY) within and .\n'
instruction += (
'For example: The answer to the question is 42 .\n'
)
# NOTE: You can actually set slightly different instruction for different agents
instruction += AGENT_CLS_TO_INST_SUFFIX.get(metadata.agent_class, '')
logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'})
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
initialize_runtime(runtime, instance)
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
metadata.agent_class
],
)
)
# ======= Attempt to evaluate the agent's edits =======
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
model_answer_raw = ''
# get the last message or thought from the agent
for event in reversed(state.history):
if event.source == 'agent':
if isinstance(event, AgentFinishAction):
model_answer_raw = event.thought
break
elif isinstance(event, CmdRunAction):
model_answer_raw = event.thought
break
elif isinstance(event, MessageAction):
model_answer_raw = event.content
break
# attempt to parse model_answer
model_answer = re.findall(r'(.*?)', model_answer_raw)
if len(model_answer) == 0:
logger.warning(f'Failed to parse model answer: {model_answer_raw}')
model_answer = model_answer_raw
else:
model_answer = model_answer[0]
logger.info(
f'Final message: {model_answer} | Ground truth: {instance["Final answer"]}'
)
score = question_scorer(
model_answer=model_answer, ground_truth=instance['Final answer']
)
test_result = {
'score': score,
'model_answer_raw': model_answer_raw,
'model_answer': model_answer,
'ground_truth': instance['Final answer'],
}
metrics = state.metrics.get() if state.metrics else None
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = compatibility_for_eval_history_pairs(state.history)
# Save the output
output = EvalOutput(
instance_id=instance['instance_id'],
instance=instance.to_dict(),
instruction=instance['Question'],
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result=test_result,
)
return output
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--level',
type=str,
help='gaia level to evaluate, eg. 2023_level1',
)
parser.add_argument(
'--data-split',
type=str,
help='data split to evaluate, eg. test',
default='validation',
)
args, _ = parser.parse_known_args()
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
llm_config.modify_params = False
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
metadata = make_metadata(
llm_config=llm_config,
dataset_name='gaia',
agent_class=args.agent_cls,
max_iterations=args.max_iterations,
eval_note=args.eval_note,
eval_output_dir=args.eval_output_dir,
data_split=args.data_split,
details={'gaia-level': args.level},
)
dataset = load_dataset('gaia-benchmark/GAIA', args.level)
huggingface_hub.snapshot_download(
'gaia-benchmark/GAIA',
repo_type='dataset',
local_dir=DATASET_CACHE_DIR,
)
gaia_tests = dataset[metadata.data_split].to_pandas()
gaia_tests.rename(columns={'task_id': 'instance_id'}, inplace=True)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
prepared_dataset = prepare_dataset(gaia_tests, output_file, args.eval_n_limit)
run_evaluation(
dataset=prepared_dataset,
metadata=metadata,
output_file=output_file,
num_workers=args.eval_num_workers,
process_instance_func=process_instance,
)