"""Implements evaluation of agents on ML-Bench, a benchmark for assessing the effectiveness of Large Language Models (LLMs) in leveraging existing functions in open-source libraries for machine learning tasks. The benchmark is introduced in the paper "ML-Bench: Evaluating Large Language Models for Code Generation in Repository-Level Machine Learning Tasks" (https://arxiv.org/abs/2311.09835). Please see https://ghcr.io/super-dainiu/ml_bench and https://huggingface.co/datasets/super-dainiu/ml-bench for more details on the dataset and docker image used in this evaluation script. TODOs: - Support additional evaluation settings, such as providing raw README content or using a retriever to extract relevant segments. - Clean up the code and docker image used for evaluation. """ import asyncio import os from typing import Any import pandas as pd from datasets import load_dataset from evaluation.utils.shared import ( EvalMetadata, EvalOutput, codeact_user_response, compatibility_for_eval_history_pairs, make_metadata, prepare_dataset, reset_logger_for_multiprocessing, run_evaluation, ) from openhands.controller.state.state import State from openhands.core.config import ( AppConfig, SandboxConfig, get_llm_config_arg, get_parser, load_app_config, ) from openhands.core.logger import openhands_logger as logger from openhands.core.main import create_runtime, run_controller from openhands.events.action import CmdRunAction, MessageAction from openhands.events.observation import CmdOutputObservation from openhands.runtime.base import Runtime from openhands.utils.async_utils import call_async_from_sync config = load_app_config() AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { 'CodeActAgent': codeact_user_response, } AGENT_CLS_TO_INST_SUFFIX = { 'CodeActAgent': 'When you think you have completed the task, please finish the interaction using the "finish" tool.\n' } ID2CONDA = { 1: 'dgl_DS', 2: 'bert_DS', 3: 'lavis_DS', 4: 'if_DS', 5: 'V2V_DS', 6: 'esm_DS', 7: 'OP_DS', 8: 'TSL_DS', 9: 'EAP_DS', 10: 'PG_DS', 11: 'PIM_DS', 12: 'AD2_DS', 13: 'L3_DS', 14: 'MZ2_DS', 15: 'GSA2_DS', } def get_config( metadata: EvalMetadata, ) -> AppConfig: config = AppConfig( default_agent=metadata.agent_class, run_as_openhands=False, runtime='docker', max_iterations=metadata.max_iterations, sandbox=SandboxConfig( base_container_image='public.ecr.aws/i5g0m1f6/ml-bench', enable_auto_lint=True, use_host_network=False, ), # do not mount workspace workspace_base=None, workspace_mount_path=None, ) config.set_llm_config(metadata.llm_config) agent_config = config.get_agent_config(metadata.agent_class) agent_config.enable_prompt_extensions = False return config def initialize_runtime( runtime: Runtime, instance: pd.Series, # this argument is not required ): """Initialize the runtime for the agent. This function is called before the runtime is used to run the agent. """ logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}") obs: CmdOutputObservation # Set instance id action = CmdRunAction(command='mkdir -p /workspace') logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) assert obs.exit_code == 0 # Set up the task environment action = CmdRunAction(command=f'conda activate {ID2CONDA[instance["github_id"]]}') logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) assert obs.exit_code == 0 repo_url = instance['github'] repo_name = repo_url.split('/')[-1] action = CmdRunAction(command=f'git clone {repo_url} /workspace/{repo_name}') logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) assert obs.exit_code == 0 action = CmdRunAction(command=f'chmod -R 777 /workspace/{repo_name}') logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) assert obs.exit_code == 0 # Navigate to the task's code path task_path = os.path.join('/workspace', repo_name, instance['path'][2:]) action = CmdRunAction(command=f'cd {task_path}') logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) assert obs.exit_code == 0 logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}") def complete_runtime( runtime: Runtime, instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name ) -> dict[str, Any]: """Complete the runtime for the agent. This function is called before the runtime is used to run the agent. If you need to do something in the sandbox to get the correctness metric after the agent has run, modify this function. """ logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}") obs: CmdOutputObservation repo_url = instance['github'] repo_name = repo_url.split('/')[-1] task_path = os.path.join('/workspace', repo_name, instance['path'][2:]) # Evaluate the agent's script eval_script = os.path.join(task_path, 'run.sh') logger.info(f'Running evaluation script: {eval_script}') action = CmdRunAction(command=f'cat {eval_script}') logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) if obs.exit_code == 0: eval_script_content = obs.content else: logger.error(f'Error reading evaluation script: {obs.content}') eval_script_content = '' action = CmdRunAction( command=f'timeout 120s conda run -n {ID2CONDA[instance["github_id"]]} bash {eval_script}', timeout=600, ) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) if obs.exit_code == 0: eval_output = obs.content else: logger.error(f'Error running evaluation script: {obs.content}') eval_output = '' outputs = { 'eval_script_content': eval_script_content, 'eval_output': eval_output, } if obs.exit_code != 0 and obs.exit_code != 124: logger.warning(f'Evaluation script failed with exit code {obs.exit_code}') logger.warning(f'Output: {eval_output}') outputs['success'] = int( 'KeyboardInterrupt' in eval_output ) # super-dainiu: assume ``KeyboardInterrupt`` is a success as is done in ML-Bench else: logger.info(f'Evaluation script succeeded with exit code {obs.exit_code}') logger.info(f'Output: {eval_output}') outputs['success'] = 1 outputs['eval_exit_code'] = obs.exit_code logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}") return outputs def process_instance(instance: Any, metadata: EvalMetadata, reset_logger: bool = True): config = get_config(metadata) # Setup the logger properly, so you can run multi-processing to parallelize the evaluation if reset_logger: log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') reset_logger_for_multiprocessing(logger, instance['instance_id'], log_dir) else: logger.info(f'Starting evaluation for instance {instance["instance_id"]}.') repo_url = instance['github'] repo_name = repo_url.split('/')[-1] task_path = os.path.join('/workspace', repo_name, instance['path'][2:]) # Prepare the task instruction instruction = ( f'Please complete the Machine Learning task in the following repository: {repo_name}\n\n' f'{instance["instruction"]}\n\n' 'You should create a script named `run.sh` under the specified path in the repo to run the task.\n\n' f'You can find the task repo at: {task_path}\n\n' + ( 'Here is the prefix code for the task:\n' '```bash\n' f'{instance["prefix_code"]}\n' '```\n\n' if instance['prefix_code'] else '' ) + 'You should terminate the subprocess after running the task (e.g., call subprocess.Popen(args).wait()).' ) instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class] runtime = create_runtime(config) call_async_from_sync(runtime.connect) initialize_runtime(runtime, instance) # Run the agent state: State | None = asyncio.run( run_controller( config=config, initial_user_action=MessageAction(content=instruction), runtime=runtime, fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get( metadata.agent_class ), ) ) assert state is not None metrics = state.metrics.get() if state.metrics else {} test_result = complete_runtime(runtime) # history is now available as a stream of events, rather than list of pairs of (Action, Observation) # for compatibility with the existing output format, we can remake the pairs here # remove when it becomes unnecessary histories = compatibility_for_eval_history_pairs(state.history) # Save the output output = EvalOutput( instance_id=instance['instance_id'], instance=instance.to_dict(), instruction=instruction, metadata=metadata, history=histories, test_result=test_result, metrics=metrics, ) return output if __name__ == '__main__': parser = get_parser() parser.add_argument( '-s', '--eval-split', type=str, default='quarter', choices=['full', 'quarter'], help='data split to evaluate on, either full or quarter', ) args, _ = parser.parse_known_args() data_split = args.eval_split ml_bench = load_dataset('super-dainiu/ml-bench', split=data_split).to_pandas() ml_bench.rename(columns={'id': 'instance_id'}, inplace=True) llm_config = None if args.llm_config: llm_config = get_llm_config_arg(args.llm_config) # modify_params must be False for evaluation purpose, for reproducibility and accurancy of results llm_config.modify_params = False if llm_config is None: raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') metadata = make_metadata( llm_config, f'ml-bench-{data_split}', args.agent_cls, args.max_iterations, args.eval_note, args.eval_output_dir, ) output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') instances = prepare_dataset(ml_bench, output_file, args.eval_n_limit) run_evaluation( instances, metadata, output_file, args.eval_num_workers, process_instance )