import asyncio import json import os from typing import Any import browsergym.webarena # noqa F401 register webarena tasks as gym environments import gymnasium as gym import pandas as pd from evaluation.utils.shared import ( EvalMetadata, EvalOutput, compatibility_for_eval_history_pairs, make_metadata, prepare_dataset, reset_logger_for_multiprocessing, run_evaluation, ) from openhands.controller.state.state import State from openhands.core.config import ( AppConfig, SandboxConfig, get_llm_config_arg, parse_arguments, ) from openhands.core.logger import openhands_logger as logger from openhands.core.main import create_runtime, run_controller from openhands.events.action import ( BrowseInteractiveAction, CmdRunAction, MessageAction, ) from openhands.events.observation import CmdOutputObservation from openhands.runtime.base import Runtime from openhands.runtime.browser.browser_env import ( BROWSER_EVAL_GET_GOAL_ACTION, BROWSER_EVAL_GET_REWARDS_ACTION, ) from openhands.utils.async_utils import call_async_from_sync SUPPORTED_AGENT_CLS = {'BrowsingAgent'} def get_config( metadata: EvalMetadata, env_id: str, ) -> AppConfig: base_url = os.environ.get('WEBARENA_BASE_URL', None) openai_api_key = os.environ.get('OPENAI_API_KEY', None) assert base_url is not None, 'WEBARENA_BASE_URL must be set' assert openai_api_key is not None, 'OPENAI_API_KEY must be set' config = AppConfig( default_agent=metadata.agent_class, run_as_openhands=False, runtime='docker', max_iterations=metadata.max_iterations, sandbox=SandboxConfig( base_container_image='python:3.12-bookworm', enable_auto_lint=True, use_host_network=False, browsergym_eval_env=env_id, runtime_startup_env_vars={ 'BASE_URL': base_url, 'OPENAI_API_KEY': openai_api_key, 'SHOPPING': f'{base_url}:7770/', 'SHOPPING_ADMIN': f'{base_url}:7780/admin', 'REDDIT': f'{base_url}:9999', 'GITLAB': f'{base_url}:8023', 'WIKIPEDIA': f'{base_url}:8888/wikipedia_en_all_maxi_2022-05/A/User:The_other_Kiwix_guy/Landing', 'MAP': f'{base_url}:3000', 'HOMEPAGE': f'{base_url}:4399', }, ), # do not mount workspace workspace_base=None, workspace_mount_path=None, ) config.set_llm_config(metadata.llm_config) agent_config = config.get_agent_config(metadata.agent_class) agent_config.enable_prompt_extensions = False return config def initialize_runtime( runtime: Runtime, ) -> dict: """Initialize the runtime for the agent. This function is called before the runtime is used to run the agent. """ logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}") obs: CmdOutputObservation # Set instance id action = CmdRunAction(command='mkdir -p /workspace') logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) assert obs.exit_code == 0 action = BrowseInteractiveAction(browser_actions=BROWSER_EVAL_GET_GOAL_ACTION) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) goal = obs.content logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}") return goal def complete_runtime( runtime: Runtime, ) -> dict[str, Any]: """Complete the runtime for the agent. This function is called before the runtime is used to run the agent. If you need to do something in the sandbox to get the correctness metric after the agent has run, modify this function. """ logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}") obs: CmdOutputObservation action = BrowseInteractiveAction(browser_actions=BROWSER_EVAL_GET_REWARDS_ACTION) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}") return { 'rewards': json.loads(obs.content), } def process_instance( instance: pd.Series, metadata: EvalMetadata, reset_logger: bool = True, ): env_id = instance.instance_id config = get_config(metadata, env_id) # Setup the logger properly, so you can run multi-processing to parallelize the evaluation if reset_logger: log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') reset_logger_for_multiprocessing(logger, env_id, log_dir) else: logger.info(f'Starting evaluation for instance {env_id}.') runtime = create_runtime(config) call_async_from_sync(runtime.connect) task_str = initialize_runtime(runtime) state: State | None = asyncio.run( run_controller( config=config, initial_user_action=MessageAction(content=task_str), runtime=runtime, ) ) # ======= Attempt to evaluate the agent's environment impact ======= # If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction) # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation. if state is None: raise ValueError('State should not be None.') metrics = state.metrics.get() if state.metrics else None # Instruction is the first message from the USER instruction = '' for event in state.history: if isinstance(event, MessageAction): instruction = event.content break return_val = complete_runtime(runtime) logger.info(f'Return value from complete_runtime: {return_val}') reward = max(return_val['rewards']) # history is now available as a stream of events, rather than list of pairs of (Action, Observation) # for compatibility with the existing output format, we can remake the pairs here # remove when it becomes unnecessary histories = compatibility_for_eval_history_pairs(state.history) # Save the output output = EvalOutput( instance_id=env_id, instruction=instruction, metadata=metadata, history=histories, metrics=metrics, error=state.last_error if state and state.last_error else None, test_result={ 'reward': reward, }, ) return output if __name__ == '__main__': args = parse_arguments() dataset = pd.DataFrame( { 'instance_id': [ id for id in gym.envs.registry.keys() if id.startswith('browsergym/webarena') ] } ) llm_config = None if args.llm_config: llm_config = get_llm_config_arg(args.llm_config) # modify_params must be False for evaluation purpose, for reproducibility and accurancy of results llm_config.modify_params = False if llm_config is None: raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') metadata = make_metadata( llm_config, args.dataset_name, args.agent_cls, args.max_iterations, args.eval_note, args.eval_output_dir, ) output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') instances = prepare_dataset(dataset, output_file, args.eval_n_limit) run_evaluation( instances, metadata, output_file, args.eval_num_workers, process_instance, )