import spaces import gradio as gr import torch from huggingface_hub import hf_hub_download import os import sys import tempfile from scipy.io.wavfile import write import numpy as np from tqdm import tqdm from underthesea import sent_tokenize try: from TTS.tts.configs.xtts_config import XttsConfig from TTS.tts.models.xtts import Xtts except ImportError: os.system("git clone https://github.com/hellcatmon/XTTSv2-Finetuning-for-New-Languages.git") if os.path.exists("XTTSv2-Finetuning-for-New-Languages/TTS"): os.system("mv XTTSv2-Finetuning-for-New-Languages/TTS ./") sys.path.append("./TTS") from TTS.tts.configs.xtts_config import XttsConfig from TTS.tts.models.xtts import Xtts # Шляхі да файлаў (цяпер як радкі) repo_id = "archivartaunik/BE_XTTS_V2_60epoch3Dataset" model_dir = "./model" # Дырэкторыя для захавання мадэлі os.makedirs(model_dir, exist_ok=True) # Ствараем дырэкторыю, калі яе няма checkpoint_file = os.path.join(model_dir, "model.pth") config_file = os.path.join(model_dir, "config.json") vocab_file = os.path.join(model_dir, "vocab.json") default_voice_file = os.path.join(model_dir, "voice.wav") if not os.path.exists(checkpoint_file): hf_hub_download(repo_id, filename="model.pth", local_dir=model_dir) if not os.path.exists(config_file): hf_hub_download(repo_id, filename="config.json", local_dir=model_dir) if not os.path.exists(vocab_file): hf_hub_download(repo_id, filename="vocab.json", local_dir=model_dir) if not os.path.exists(default_voice_file): hf_hub_download(repo_id, filename="voice.wav", local_dir=model_dir) # Загрузка канфігурацыі і мадэлі адзін раз config = XttsConfig() config.load_json(config_file) XTTS_MODEL = Xtts.init_from_config(config) XTTS_MODEL.load_checkpoint(config, checkpoint_path=checkpoint_file, vocab_path=vocab_file, use_deepspeed=False) # Тут выпраўленне device = "cuda:0" if torch.cuda.is_available() else "cpu" XTTS_MODEL.to(device) sampling_rate = XTTS_MODEL.config.audio["sample_rate"] @spaces.GPU(duration=60) def text_to_speech(belarusian_story, speaker_audio_file=None): if not speaker_audio_file or (not isinstance(speaker_audio_file, str) and speaker_audio_file.name == ""): speaker_audio_file = default_voice_file try: gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents( audio_path=speaker_audio_file, gpt_cond_len=XTTS_MODEL.config.gpt_cond_len, max_ref_length=XTTS_MODEL.config.max_ref_len, sound_norm_refs=XTTS_MODEL.config.sound_norm_refs, ) except Exception as e: return f"Error getting conditioning latents: {e}" try: tts_texts = sent_tokenize(belarusian_story) except Exception as e: return f"Error tokenizing text: {e}" all_wavs = [] for text in tqdm(tts_texts): try: with torch.no_grad(): wav_chunk = XTTS_MODEL.inference( text=text, language="be", gpt_cond_latent=gpt_cond_latent, speaker_embedding=speaker_embedding, temperature=0.1, length_penalty=1.0, repetition_penalty=10.0, top_k=10, top_p=0.3, ) all_wavs.append(wav_chunk["wav"]) except Exception as e: return f"Error generating audio: {e}" try: out_wav = np.concatenate(all_wavs) except ValueError: return "Немагчыма згенерыраваць аўдыё. Праверце ўваходны тэкст і аўдыёфайл." except Exception as e: return f"Error concatenating audio: {e}" temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav") write(temp_file.name, sampling_rate, out_wav) return temp_file.name demo = gr.Interface( fn=text_to_speech, inputs=[ gr.Textbox(lines=5, label="Тэкст на беларускай мове"), gr.Audio(type="filepath", label="Запішыце або загрузіце файл голасу (без іншых гукаў) не карацей 7 секунд", interactive=True), ], outputs="audio", title="XTTS Belarusian TTS Demo", description="Увядзіце тэкст, і мадэль пераўтворыць яго ў аўдыя. Вы можаце выкарыстоўваць голас па змаўчанні, загрузіць уласны файл або запісаць аўдыё.", ) if __name__ == "__main__": demo.launch()