import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline #tokenizer = AutoTokenizer.from_pretrained("human-centered-summarization/financial-summarization-pegasus") #model = AutoModelForSeq2SeqLM.from_pretrained("human-centered-summarization/financial-summarization-pegasus") #pipe = pipeline(task="summarization", #model=model, #tokenizer=tokenizer,) pipe = pipeline(task="summarization", model = "human-centered-summarization/financial-summarization-pegasus") with open('text1.txt') as f: text1 = f.read() gr.Interface.from_pipeline(pipe, title="Financial Summarization", description="Financial Summarization using Pegasus. Model can be found at https://huggingface.co/human-centered-summarization/financial-summarization-pegasus", examples=[text1] ).launch()