from dotenv import load_dotenv import time import gradio as gr from PIL import Image from ChatCohere import chat_completion, summarize from PokemonCards import choose_random_cards from QdrantRag import NeuralSearcher, SemanticCache, qdrant_client, encoder, image_encoder, processor, sparse_encoder load_dotenv() searcher = NeuralSearcher("pokemon_texts", "pokemon_images", qdrant_client, encoder, image_encoder, processor, sparse_encoder) semantic_cache = SemanticCache(qdrant_client, encoder, "semantic_cache", 0.75) def chat_pokemon(message: str, history): answer = semantic_cache.search_cache(message) if answer != "": r = "" for c in answer: r += c time.sleep(0.001) yield r else: context_search = searcher.search_text(message) reranked_context = searcher.reranking(message, context_search) context = "\n\n-----------------\n\n".join(reranked_context) final_prompt = f"USER QUERY:\n\n{message}\n\nCONTEXT:\n\n{context}" response = chat_completion(final_prompt) semantic_cache.upload_to_cache(message, response) r = "" for c in response: r += c time.sleep(0.001) yield r def what_pokemon(image_input): save_path = Image.fromarray(image_input) result = searcher.search_image(save_path) return "You Pokemon might be: " + result[0] def card_package(n_cards:int=5): description, cards = choose_random_cards(n_cards) package = [f"![Card {i+1}]({cards[i]})" for i in range(len(cards))] cards_message = "\n\n".join(package) natural_lang_description = chat_completion(f"Can you enthusiastically describe the cards in this package?\n\n{description}") return "## Your package:\n\n" + cards_message + "\n\n## Description:\n\n" + summarize(natural_lang_description) iface1 = gr.ChatInterface(fn=chat_pokemon, title="Pokemon Chatbot", description="Ask any question about Pokemon and get an answer!") iface2 = gr.Interface(fn=what_pokemon, title="Pokemon Image Classifier", description="Upload an image of a Pokemon and get its name!", inputs="image", outputs="text") iface3 = gr.Interface(fn=card_package, title="Pokemon Card Package", description="Get a package of random Pokemon cards!", inputs=gr.Slider(5,10,step=1, label="Number of cards"), outputs=gr.Markdown(value="Your output will be displayed here", label="Card Package")) iface = gr.TabbedInterface([iface1, iface2, iface3], ["PokemonChat", "Identify Pokemon", "Card Package"]) iface.launch()