import os.path import time as reqtime import datetime from pytz import timezone import torch import spaces import gradio as gr from x_transformer_1_23_2 import * import random import tqdm from midi_to_colab_audio import midi_to_colab_audio import TMIDIX import matplotlib.pyplot as plt in_space = os.getenv("SYSTEM") == "spaces" # ================================================================================================= @spaces.GPU def GenerateDrums(input_midi, input_num_tokens, input_top_k_value, input_max_drums_per_step): print('=' * 70) print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) start_time = reqtime.time() print('Loading model...') SEQ_LEN = 8192 # Models seq len PAD_IDX = 393 # Models pad index DEVICE = 'cuda' # 'cuda' # instantiate the model model = TransformerWrapper( num_tokens = PAD_IDX+1, max_seq_len = SEQ_LEN, attn_layers = Decoder(dim = 1024, depth = 4, heads = 16, attn_flash = True) ) model = AutoregressiveWrapper(model, ignore_index = PAD_IDX) model.to(DEVICE) print('=' * 70) print('Loading model checkpoint...') model.load_state_dict( torch.load('Ultimate_Drums_Transformer_Small_Trained_Model_VER4_RST_VEL_4L_9107_steps_0.5467_loss_0.8231_acc.pth', map_location=DEVICE)) print('=' * 70) model.eval() if DEVICE == 'cpu': dtype = torch.bfloat16 else: dtype = torch.bfloat16 ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) print('Done!') print('=' * 70) fn = os.path.basename(input_midi.name) fn1 = fn.split('.')[0] input_num_tokens = max(16, min(2048, input_num_tokens)) print('-' * 70) print('Input file name:', fn) print('Req num toks:', input_num_tokens) print('Req top_k value:', input_top_k_value) print('Req max number of drums pitches:', input_max_drums_per_step) print('-' * 70) #=============================================================================== # Raw single-track ms score raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name) #=============================================================================== # Enhanced score notes escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] #======================================================= # PRE-PROCESSING #=============================================================================== # Augmented enhanced score notes escore_notes = [e for e in escore_notes if e[3] != 9] escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32) patches = TMIDIX.patch_list_from_enhanced_score_notes(escore_notes) dscore = TMIDIX.delta_score_notes(escore_notes) cscore = TMIDIX.chordify_score([d[1:] for d in dscore]) cscore_melody = [c[0] for c in cscore] comp_times = [t[1] for t in dscore if t[1] != 0] comp_times = comp_times + [comp_times[-1]] #=============================================================================== print('=' * 70) print('Sample output events', escore_notes[:5]) print('=' * 70) print('Generating...') output = [] temperature=0.9 max_drums_limit=input_max_drums_per_step num_memory_tokens=4096 for c in comp_times[:input_num_tokens]: output.append(c) x = torch.tensor([output] * 1, dtype=torch.long, device=DEVICE) o = 128 ncount = 0 time = 0 ntime = output[-1] while o > 127 and ncount < max_drums_limit and time < ntime: with ctx: out = model.generate(x[-num_memory_tokens:], 1, filter_logits_fn=top_k, filter_kwargs={'k': input_top_k_value}, temperature=temperature, return_prime=False, verbose=False) o = out.tolist()[0][0] if 128 <= o < 256: time += (o-128) ncount = 0 if 256 < o < 384: ncount += 1 if o > 127 and time < ntime: x = torch.cat((x, out), 1) x_output = x.tolist()[0][len(output):] output.extend(x_output) print('=' * 70) print('Done!') print('=' * 70) #=============================================================================== print('Rendering results...') print('=' * 70) print('Sample INTs', output[:12]) print('=' * 70) if len(output) != 0: song = output song_f = [] time = 0 dtime = 0 ntime = 0 ptime = 0 dur = 32 vel = 90 vels = [100, 120] pitch = 0 channel = 0 idx = 0 for ss in song: if 0 <= ss < 128: dtime = ptime = time time += cscore[idx][0][0] * 32 for c in cscore[idx]: song_f.append(['note', time, c[1] * 32, c[2], c[3], c[4], c[5]]) dtime = time idx += 1 if 128 <= ss < 256: dtime += (ss-128) * 32 if 256 < ss < 384: pitch = (ss-256) if 384 < ss < 393: vel = (ss-384) * 15 song_f.append(['note', dtime, dur, 9, pitch, vel, 128]) detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, output_signature = 'Ultimate Drums Transformer', output_file_name = fn1, track_name='Project Los Angeles', list_of_MIDI_patches=patches ) new_fn = fn1+'.mid' audio = midi_to_colab_audio(new_fn, soundfont_path=soundfont, sample_rate=16000, volume_scale=10, output_for_gradio=True ) print('Done!') print('=' * 70) #======================================================== output_midi_title = str(fn1) output_midi_summary = str(song_f[:3]) output_midi = str(new_fn) output_audio = (16000, audio) output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True) print('Output MIDI file name:', output_midi) print('Output MIDI title:', output_midi_title) print('Output MIDI summary:', '') print('=' * 70) #======================================================== print('-' * 70) print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('-' * 70) print('Req execution time:', (reqtime.time() - start_time), 'sec') return [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot] # ================================================================================================= if __name__ == "__main__": PDT = timezone('US/Pacific') print('=' * 70) print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" app = gr.Blocks() with app: gr.Markdown("

Ultimate Drums Transformer

") gr.Markdown("

Generate unique drums track for any MIDI

") gr.Markdown( "![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Ultimate-Drums-Transformer&style=flat)\n\n" "SOTA pure drums transformer which is capable of drums track generation for any source composition\n\n" "Check out [Ultimate Drums Transformer](https://github.com/asigalov61/Ultimate-Drums-Transformer) on GitHub!\n\n" "[Open In Colab]" "(https://colab.research.google.com/github/asigalov61/Ultimate-Drums-Transformer/blob/main/Ultimate_Drums_Transformer.ipynb)" " for faster execution and endless generation" ) gr.Markdown("## Upload your MIDI or select a sample example MIDI") input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) input_num_tokens = gr.Slider(16, 2048, value=256, step=16, label="Number of composition chords to generate drums for") input_top_k_value = gr.Slider(1, 50, value=5, step=1, label="Model sampling top_k value") input_max_drums_per_step = gr.Slider(1, 10, value=5, step=1, label="Maximum number of drums pitches per step") run_btn = gr.Button("generate", variant="primary") gr.Markdown("## Generation results") output_midi_title = gr.Textbox(label="Output MIDI title") output_midi_summary = gr.Textbox(label="Output MIDI summary") output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio") output_plot = gr.Plot(label="Output MIDI score plot") output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) run_event = run_btn.click(GenerateDrums, [input_midi, input_num_tokens, input_top_k_value, input_max_drums_per_step], [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot]) gr.Examples( [["Ultimate-Drums-Transformer-Melody-Seed-1.mid", 128, 5, 5], ["Ultimate-Drums-Transformer-Melody-Seed-2.mid", 128, 5, 5], ["Ultimate-Drums-Transformer-Melody-Seed-3.mid", 128, 5, 5], ["Ultimate-Drums-Transformer-Melody-Seed-4.mid", 128, 5, 5], ["Ultimate-Drums-Transformer-Melody-Seed-5.mid", 128, 5, 5], ["Ultimate-Drums-Transformer-Melody-Seed-6.mid", 128, 5, 5], ["Ultimate-Drums-Transformer-MI-Seed-1.mid", 128, 5, 5], ["Ultimate-Drums-Transformer-MI-Seed-2.mid", 128, 5, 5], ["Ultimate-Drums-Transformer-MI-Seed-3.mid", 128, 5, 5], ["Ultimate-Drums-Transformer-MI-Seed-4.mid", 128, 5, 5]], [input_midi, input_num_tokens, input_top_k_value, input_max_drums_per_step], [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot], GenerateDrums, cache_examples=True, ) app.queue().launch()