import gradio as gr import os import csv import json import uuid import random import pickle from langchain.vectorstores import FAISS from langchain.embeddings import HuggingFaceEmbeddings from googleapiclient.discovery import build from google.oauth2 import service_account USER_ID = uuid.uuid4() SERVICE_ACCOUNT_JSON = os.environ.get('GOOGLE_SHEET_CREDENTIALS') creds = service_account.Credentials.from_service_account_info(json.loads(SERVICE_ACCOUNT_JSON)) SPREADSHEET_ID = '1o0iKPxWYKYKEPjqB2YwrTgrLzvGyb9ULj9tnw_cfJb0' service = build('sheets', 'v4', credentials=creds) LEFT_MODEL = None RIGHT_MODEL = None with open("article_list.pkl","rb") as articles: article_list = tuple(pickle.load(articles)) INDEXES = ["miread_large", "miread_contrastive", "scibert_contrastive"] MODELS = [ "biodatlab/MIReAD-Neuro-Large", "biodatlab/MIReAD-Neuro-Contrastive", "biodatlab/SciBERT-Neuro-Contrastive", ] model_kwargs = {'device': 'cpu'} encode_kwargs = {'normalize_embeddings': False} faiss_embedders = [HuggingFaceEmbeddings( model_name=name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs) for name in MODELS] vecdbs = [FAISS.load_local(index_name, faiss_embedder) for index_name, faiss_embedder in zip(INDEXES, faiss_embedders)] def get_matchup(): global LEFT_MODEL, RIGHT_MODEL choices = INDEXES left, right = random.sample(choices,2) LEFT_MODEL, RIGHT_MODEL = left, right return left, right def get_comp(prompt): left, right = get_matchup() left_output = inference(prompt,left) right_output = inference(prompt,right) return left_output, right_output def get_article(): return random.choice(article_list) def send_result(l_output, r_output, prompt, pick): global LEFT_MODEL, RIGHT_MODEL # with open('results.csv','a') as res_file: # writer = csv.writer(res_file) # writer.writerow(row) if (pick=='left'): pick = LEFT_MODEL else: pick = RIGHT_MODEL row = [USER_ID,prompt,LEFT_MODEL,RIGHT_MODEL,pick] row = [str(x) for x in row] body = {'values': [row]} result = service.spreadsheets().values().append(spreadsheetId=SPREADSHEET_ID, range='A1:E1', valueInputOption='RAW', body=body).execute() print(f"Appended {result['updates']['updatedCells']} cells.") new_prompt = get_article() return new_prompt,gr.State.update(value=new_prompt) def get_matches(query, db_name="miread_contrastive"): """ Wrapper to call the similarity search on the required index """ matches = vecdbs[INDEXES.index( db_name)].similarity_search_with_score(query, k=30) return matches def inference(query, model="miread_contrastive"): """ This function processes information retrieved by the get_matches() function Returns - Gradio update commands for the authors, abstracts and journals tablular output """ matches = get_matches(query, model) auth_counts = {} n_table = [] scores = [round(match[1].item(), 3) for match in matches] min_score = min(scores) max_score = max(scores) def normaliser(x): return round(1 - (x-min_score)/max_score, 3) i = 1 for match in matches: doc = match[0] score = round(normaliser(round(match[1].item(), 3)), 3) title = doc.metadata['title'] author = doc.metadata['authors'][0].title() date = doc.metadata.get('date', 'None') link = doc.metadata.get('link', 'None') # For authors record = [score, author, title, link, date] if auth_counts.get(author, 0) < 2: n_table.append([i,]+record) i += 1 if auth_counts.get(author, 0) == 0: auth_counts[author] = 1 else: auth_counts[author] += 1 n_output = gr.Dataframe.update(value=n_table[:10], visible=True) return n_output with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# NBDT Recommendation Engine Arena") gr.Markdown("NBDT Recommendation Engine for Editors is a tool for neuroscience authors/abstracts/journalsrecommendation built for NBDT journal editors. \ It aims to help an editor to find similar reviewers, abstracts, and journals to a given submitted abstract.\ To find a recommendation, paste a `title[SEP]abstract` or `abstract` in the text box below and click on the appropriate \"Find Matches\" button.\ Then, you can hover to authors/abstracts/journals tab to find a suggested list.\ The data in our current demo includes authors associated with the NBDT Journal. We will update the data monthly for an up-to-date publications.") article = get_article() models = gr.State(value=get_matchup()) prompt = gr.State(value=article) abst = gr.Textbox(value = article, label="Abstract", lines=10) action_btn = gr.Button(value="Get comparison") with gr.Group(): with gr.Row().style(equal_height=True): with gr.Column(scale=1): l_output = gr.Dataframe( headers=['No.', 'Score', 'Name', 'Title', 'Link', 'Date'], datatype=['number', 'number', 'str', 'str', 'str', 'str'], col_count=(6, "fixed"), wrap=True, visible=True, label='Model A', show_label = True, overflow_row_behaviour='paginate', scale=1 ) with gr.Column(scale=1): r_output = gr.Dataframe( headers=['No.', 'Score', 'Name', 'Title', 'Link', 'Date'], datatype=['number', 'number', 'str', 'str', 'str', 'str'], col_count=(6, "fixed"), wrap=True, visible=True, label='Model B', show_label = True, overflow_row_behaviour='paginate', scale=1 ) with gr.Row().style(equal_height=True): l_btn = gr.Button(value="Model A is better",scale=1) r_btn = gr.Button(value="Model B is better",scale=1) action_btn.click(fn=get_comp, inputs=[prompt,], outputs=[l_output, r_output], api_name="arena") l_btn.click(fn=lambda x,y,z: send_result(x,y,z,'left'), inputs=[l_output,r_output,prompt], outputs=[abst,], api_name="feedleft") r_btn.click(fn=lambda x,y,z: send_result(x,y,z,'right'), inputs=[l_output,r_output,prompt], outputs=[abst,prompt], api_name="feedright") demo.launch(debug=True)