import inspect import os import uuid from pathlib import Path import pandas as pd import streamlit as st from datasets import get_dataset_config_names from dotenv import load_dotenv from evaluate import load from huggingface_hub import list_datasets, list_metrics from tqdm import tqdm from evaluation import filter_evaluated_models from utils import ( commit_evaluation_log, format_col_mapping, get_compatible_models, get_key, get_metadata, http_get, http_post, ) if Path(".env").is_file(): load_dotenv(".env") HF_TOKEN = os.getenv("HF_TOKEN") AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME") AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API") DATASETS_PREVIEW_API = os.getenv("DATASETS_PREVIEW_API") TASK_TO_ID = { "binary_classification": 1, "multi_class_classification": 2, # "multi_label_classification": 3, # Not fully supported in AutoTrain "entity_extraction": 4, "extractive_question_answering": 5, "translation": 6, "summarization": 8, } TASK_TO_DEFAULT_METRICS = { "binary_classification": ["f1", "precision", "recall", "auc", "accuracy"], "multi_class_classification": [ "f1", "precision", "recall", "accuracy", ], "entity_extraction": ["precision", "recall", "f1", "accuracy"], "extractive_question_answering": [], "translation": ["sacrebleu"], "summarization": ["rouge1", "rouge2", "rougeL", "rougeLsum"], } SUPPORTED_TASKS = list(TASK_TO_ID.keys()) @st.cache def get_supported_metrics(): metrics = [metric.id for metric in list_metrics()] supported_metrics = [] for metric in tqdm(metrics): # TODO: this currently requires all metric dependencies to be installed # in the same environment. Refactor to avoid needing to actually load # the metric. try: print(f"INFO -- Attempting to load metric: {metric}") metric_func = load(metric) except Exception as e: print(e) print("WARNING -- Skipping the following metric, which cannot load:", metric) continue argspec = inspect.getfullargspec(metric_func.compute) if "references" in argspec.kwonlyargs and "predictions" in argspec.kwonlyargs: # We require that "references" and "predictions" are arguments # to the metric function. We also require that the other arguments # besides "references" and "predictions" have defaults and so do not # need to be specified explicitly. defaults = True for key, value in argspec.kwonlydefaults.items(): if key not in ("references", "predictions"): if value is None: defaults = False break if defaults: supported_metrics.append(metric) return supported_metrics supported_metrics = get_supported_metrics() ####### # APP # ####### st.title("Evaluation on the Hub") st.markdown( """ Welcome to Hugging Face's automatic model evaluator! This application allows you to evaluate 🤗 Transformers [models](https://huggingface.co/models?library=transformers&sort=downloads) across a wide variety of datasets on the Hub. Please select the dataset and configuration below. The results of your evaluation will be displayed on the [public leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards). """ ) all_datasets = [d.id for d in list_datasets()] query_params = st.experimental_get_query_params() default_dataset = all_datasets[0] if "dataset" in query_params: if len(query_params["dataset"]) > 0 and query_params["dataset"][0] in all_datasets: default_dataset = query_params["dataset"][0] selected_dataset = st.selectbox( "Select a dataset", all_datasets, index=all_datasets.index(default_dataset), help="""Datasets with metadata can be evaluated with 1-click. Check out the \ [documentation](https://huggingface.co/docs/hub/datasets-cards) to add \ evaluation metadata to a dataset.""", ) st.experimental_set_query_params(**{"dataset": [selected_dataset]}) metadata = get_metadata(selected_dataset) print(f"INFO -- Dataset metadata: {metadata}") if metadata is None: st.warning("No evaluation metadata found. Please configure the evaluation job below.") with st.expander("Advanced configuration"): # Select task selected_task = st.selectbox( "Select a task", SUPPORTED_TASKS, index=SUPPORTED_TASKS.index(metadata[0]["task_id"]) if metadata is not None else 0, ) # Select config configs = get_dataset_config_names(selected_dataset) selected_config = st.selectbox("Select a config", configs) # Select splits splits_resp = http_get( path="/splits", domain=DATASETS_PREVIEW_API, params={"dataset": selected_dataset}, ) if splits_resp.status_code == 200: split_names = [] all_splits = splits_resp.json() for split in all_splits["splits"]: if split["config"] == selected_config: split_names.append(split["split"]) if metadata is not None: eval_split = metadata[0]["splits"].get("eval_split", None) else: eval_split = None selected_split = st.selectbox( "Select a split", split_names, index=split_names.index(eval_split) if eval_split is not None else 0, ) # Select columns rows_resp = http_get( path="/rows", domain=DATASETS_PREVIEW_API, params={ "dataset": selected_dataset, "config": selected_config, "split": selected_split, }, ).json() col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns) st.markdown("**Map your data columns**") col1, col2 = st.columns(2) # TODO: find a better way to layout these items # TODO: need graceful way of handling dataset <--> task mismatch for datasets with metadata col_mapping = {} if selected_task in ["binary_classification", "multi_class_classification"]: with col1: st.markdown("`text` column") st.text("") st.text("") st.text("") st.text("") st.markdown("`target` column") with col2: text_col = st.selectbox( "This column should contain the text you want to classify", col_names, index=col_names.index(get_key(metadata[0]["col_mapping"], "text")) if metadata is not None else 0, ) target_col = st.selectbox( "This column should contain the labels you want to assign to the text", col_names, index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0, ) col_mapping[text_col] = "text" col_mapping[target_col] = "target" elif selected_task == "entity_extraction": with col1: st.markdown("`tokens` column") st.text("") st.text("") st.text("") st.text("") st.markdown("`tags` column") with col2: tokens_col = st.selectbox( "This column should contain the array of tokens", col_names, index=col_names.index(get_key(metadata[0]["col_mapping"], "tokens")) if metadata is not None else 0, ) tags_col = st.selectbox( "This column should contain the labels to associate to each part of the text", col_names, index=col_names.index(get_key(metadata[0]["col_mapping"], "tags")) if metadata is not None else 0, ) col_mapping[tokens_col] = "tokens" col_mapping[tags_col] = "tags" elif selected_task == "translation": with col1: st.markdown("`source` column") st.text("") st.text("") st.text("") st.text("") st.markdown("`target` column") with col2: text_col = st.selectbox( "This column should contain the text you want to translate", col_names, index=col_names.index(get_key(metadata[0]["col_mapping"], "source")) if metadata is not None else 0, ) target_col = st.selectbox( "This column should contain an example translation of the source text", col_names, index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0, ) col_mapping[text_col] = "source" col_mapping[target_col] = "target" elif selected_task == "summarization": with col1: st.markdown("`text` column") st.text("") st.text("") st.text("") st.text("") st.markdown("`target` column") with col2: text_col = st.selectbox( "This column should contain the text you want to summarize", col_names, index=col_names.index(get_key(metadata[0]["col_mapping"], "text")) if metadata is not None else 0, ) target_col = st.selectbox( "This column should contain an example summarization of the text", col_names, index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0, ) col_mapping[text_col] = "text" col_mapping[target_col] = "target" elif selected_task == "extractive_question_answering": if metadata is not None: col_mapping = metadata[0]["col_mapping"] # Hub YAML parser converts periods to hyphens, so we remap them here col_mapping = format_col_mapping(col_mapping) with col1: st.markdown("`context` column") st.text("") st.text("") st.text("") st.text("") st.markdown("`question` column") st.text("") st.text("") st.text("") st.text("") st.markdown("`answers.text` column") st.text("") st.text("") st.text("") st.text("") st.markdown("`answers.answer_start` column") with col2: context_col = st.selectbox( "This column should contain the question's context", col_names, index=col_names.index(get_key(col_mapping, "context")) if metadata is not None else 0, ) question_col = st.selectbox( "This column should contain the question to be answered, given the context", col_names, index=col_names.index(get_key(col_mapping, "question")) if metadata is not None else 0, ) answers_text_col = st.selectbox( "This column should contain example answers to the question, extracted from the context", col_names, index=col_names.index(get_key(col_mapping, "answers.text")) if metadata is not None else 0, ) answers_start_col = st.selectbox( "This column should contain the indices in the context of the first character of each answers.text", col_names, index=col_names.index(get_key(col_mapping, "answers.answer_start")) if metadata is not None else 0, ) col_mapping[context_col] = "context" col_mapping[question_col] = "question" col_mapping[answers_text_col] = "answers.text" col_mapping[answers_start_col] = "answers.answer_start" # Select metrics st.markdown("**Select metrics**") st.markdown("The following metrics will be computed") html_string = " ".join( [ '
' + '
' + metric + "
" for metric in TASK_TO_DEFAULT_METRICS[selected_task] ] ) st.markdown(html_string, unsafe_allow_html=True) selected_metrics = st.multiselect( "(Optional) Select additional metrics", list(set(supported_metrics) - set(TASK_TO_DEFAULT_METRICS[selected_task])), ) st.info( """Note: user-selected metrics will be run with their default arguments. \ Check out the [available metrics](https://huggingface.co/metrics) for more details.""" ) with st.form(key="form"): # Grab all models fine-tuned on SQuAD for question answering tasks if selected_task == "extractive_question_answering": compatible_models = get_compatible_models(selected_task, [selected_dataset, "squad", "squad_v2"]) else: compatible_models = get_compatible_models(selected_task, [selected_dataset]) selected_models = st.multiselect( "Select the models you wish to evaluate", compatible_models, help="""Don't see your model in this list? Add the dataset and task it was trained to the \ [model card metadata.](https://huggingface.co/docs/hub/models-cards#model-card-metadata)""", ) print("INFO -- Selected models before filter:", selected_models) if len(selected_models) > 0: selected_models = filter_evaluated_models( selected_models, selected_task, selected_dataset, selected_config, selected_split, ) print("INFO -- Selected models after filter:", selected_models) submit_button = st.form_submit_button("Evaluate models 🚀") if submit_button: if len(selected_models) > 0: project_id = str(uuid.uuid4())[:8] project_payload = { "username": AUTOTRAIN_USERNAME, "proj_name": f"eval-project-{project_id}", "task": TASK_TO_ID[selected_task], "config": { "language": "en" if selected_task != "translation" else "en2de", # Need this dummy pair to enable translation "max_models": 5, "instance": { "provider": "aws", "instance_type": "ml.g4dn.4xlarge", "max_runtime_seconds": 172800, "num_instances": 1, "disk_size_gb": 150, }, "evaluation": { "metrics": selected_metrics, "models": selected_models, }, }, } print(f"INFO -- Payload: {project_payload}") project_json_resp = http_post( path="/projects/create", payload=project_payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API, ).json() print(f"INFO -- Project creation response: {project_json_resp}") if project_json_resp["created"]: data_payload = { "split": 4, # use "auto" split choice in AutoTrain "col_mapping": col_mapping, "load_config": {"max_size_bytes": 0, "shuffle": False}, } data_json_resp = http_post( path=f"/projects/{project_json_resp['id']}/data/{selected_dataset}", payload=data_payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API, params={ "type": "dataset", "config_name": selected_config, "split_name": selected_split, }, ).json() print(f"INFO -- Dataset creation response: {data_json_resp}") if data_json_resp["download_status"] == 1: train_json_resp = http_get( path=f"/projects/{project_json_resp['id']}/data/start_process", token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API, ).json() print(f"INFO -- AutoTrain job response: {train_json_resp}") if train_json_resp["success"]: st.success(f"✅ Successfully submitted evaluation job with project name {project_id}") st.markdown( f""" Evaluation can take up to 1 hour to complete, so grab a ☕ or 🍵 while you wait: 📊 Click [here](https://hf.co/spaces/autoevaluate/leaderboards?dataset={selected_dataset}) \ to view the results from your submission """ ) print("INFO -- Pushing evaluation job logs to the Hub") evaluation_log = {} evaluation_log["payload"] = project_payload evaluation_log["project_creation_response"] = project_json_resp evaluation_log["dataset_creation_response"] = data_json_resp evaluation_log["autotrain_job_response"] = train_json_resp commit_evaluation_log(evaluation_log, hf_access_token=HF_TOKEN) else: st.error("🙈 Oh no, there was an error submitting your evaluation job!") else: st.warning("⚠️ No models were selected for evaluation!")