import os import uuid from pathlib import Path import pandas as pd import streamlit as st from datasets import get_dataset_config_names from dotenv import load_dotenv from huggingface_hub import list_datasets from evaluation import (EvaluationInfo, compute_evaluation_id, get_evaluation_ids) from utils import (get_compatible_models, get_key, get_metadata, http_get, http_post) if Path(".env").is_file(): load_dotenv(".env") HF_TOKEN = os.getenv("HF_TOKEN") AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME") AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API") DATASETS_PREVIEW_API = os.getenv("DATASETS_PREVIEW_API") TASK_TO_ID = { "binary_classification": 1, "multi_class_classification": 2, # "multi_label_classification": 3, # Not fully supported in AutoTrain "entity_extraction": 4, "extractive_question_answering": 5, "translation": 6, "summarization": 8, } SUPPORTED_TASKS = list(TASK_TO_ID.keys()) ########### ### APP ### ########### st.title("Evaluation as a Service") st.markdown( """ Welcome to Hugging Face's Evaluation as a Service! This application allows you to evaluate any 🤗 Transformers model with a dataset on the Hub. Please select the dataset and configuration below. The results of your evaluation will be displayed on the public leaderboard [here](https://huggingface.co/spaces/autoevaluate/leaderboards). """ ) all_datasets = [d.id for d in list_datasets()] query_params = st.experimental_get_query_params() default_dataset = all_datasets[0] if "dataset" in query_params: if len(query_params["dataset"]) > 0 and query_params["dataset"][0] in all_datasets: default_dataset = query_params["dataset"][0] selected_dataset = st.selectbox("Select a dataset", all_datasets, index=all_datasets.index(default_dataset)) st.experimental_set_query_params(**{"dataset": [selected_dataset]}) metadata = get_metadata(selected_dataset) print(metadata) if metadata is None: st.warning("No evaluation metadata found. Please configure the evaluation job below.") with st.expander("Advanced configuration"): ## Select task selected_task = st.selectbox( "Select a task", SUPPORTED_TASKS, index=SUPPORTED_TASKS.index(metadata[0]["task_id"]) if metadata is not None else 0, ) ### Select config configs = get_dataset_config_names(selected_dataset) selected_config = st.selectbox("Select a config", configs) ## Select splits splits_resp = http_get(path="/splits", domain=DATASETS_PREVIEW_API, params={"dataset": selected_dataset}) if splits_resp.status_code == 200: split_names = [] all_splits = splits_resp.json() for split in all_splits["splits"]: if split["config"] == selected_config: split_names.append(split["split"]) selected_split = st.selectbox( "Select a split", split_names, index=split_names.index(metadata[0]["splits"]["eval_split"]) if metadata is not None else 0, ) ## Select columns rows_resp = http_get( path="/rows", domain=DATASETS_PREVIEW_API, params={"dataset": selected_dataset, "config": selected_config, "split": selected_split}, ).json() col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns) st.markdown("**Map your data columns**") col1, col2 = st.columns(2) # TODO: find a better way to layout these items # TODO: need graceful way of handling dataset <--> task mismatch for datasets with metadata col_mapping = {} if selected_task in ["binary_classification", "multi_class_classification"]: with col1: st.markdown("`text` column") st.text("") st.text("") st.text("") st.text("") st.markdown("`target` column") with col2: text_col = st.selectbox( "This column should contain the text you want to classify", col_names, index=col_names.index(get_key(metadata[0]["col_mapping"], "text")) if metadata is not None else 0, ) target_col = st.selectbox( "This column should contain the labels you want to assign to the text", col_names, index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0, ) col_mapping[text_col] = "text" col_mapping[target_col] = "target" elif selected_task == "entity_extraction": with col1: st.markdown("`tokens` column") st.text("") st.text("") st.text("") st.text("") st.markdown("`tags` column") with col2: tokens_col = st.selectbox( "This column should contain the parts of the text (as an array of tokens) you want to assign labels to", col_names, index=col_names.index(get_key(metadata[0]["col_mapping"], "tokens")) if metadata is not None else 0, ) tags_col = st.selectbox( "This column should contain the labels to associate to each part of the text", col_names, index=col_names.index(get_key(metadata[0]["col_mapping"], "tags")) if metadata is not None else 0, ) col_mapping[tokens_col] = "tokens" col_mapping[tags_col] = "tags" elif selected_task == "translation": with col1: st.markdown("`source` column") st.text("") st.text("") st.text("") st.text("") st.markdown("`target` column") with col2: text_col = st.selectbox( "This column should contain the text you want to translate", col_names, index=col_names.index(get_key(metadata[0]["col_mapping"], "source")) if metadata is not None else 0, ) target_col = st.selectbox( "This column should contain an example translation of the source text", col_names, index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0, ) col_mapping[text_col] = "source" col_mapping[target_col] = "target" elif selected_task == "summarization": with col1: st.markdown("`text` column") st.text("") st.text("") st.text("") st.text("") st.markdown("`target` column") with col2: text_col = st.selectbox( "This column should contain the text you want to summarize", col_names, index=col_names.index(get_key(metadata[0]["col_mapping"], "text")) if metadata is not None else 0, ) target_col = st.selectbox( "This column should contain an example summarization of the text", col_names, index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0, ) col_mapping[text_col] = "text" col_mapping[target_col] = "target" elif selected_task == "extractive_question_answering": col_mapping = metadata[0]["col_mapping"] # Hub YAML parser converts periods to hyphens, so we remap them here col_mapping = {k.replace("-", "."): v.replace("-", ".") for k, v in col_mapping.items()} with col1: st.markdown("`context` column") st.text("") st.text("") st.text("") st.text("") st.markdown("`question` column") st.text("") st.text("") st.text("") st.text("") st.markdown("`answers.text` column") st.text("") st.text("") st.text("") st.text("") st.markdown("`answers.answer_start` column") with col2: context_col = st.selectbox( "This column should contain the question's context", col_names, index=col_names.index(get_key(col_mapping, "context")) if metadata is not None else 0, ) question_col = st.selectbox( "This column should contain the question to be answered, given the context", col_names, index=col_names.index(get_key(col_mapping, "question")) if metadata is not None else 0, ) answers_text_col = st.selectbox( "This column should contain example answers to the question, extracted from the context", col_names, index=col_names.index(get_key(col_mapping, "answers.text")) if metadata is not None else 0, ) answers_start_col = st.selectbox( "This column should contain the indices in the context of the first character of each answers.text", col_names, index=col_names.index(get_key(col_mapping, "answers.answer_start")) if metadata is not None else 0, ) col_mapping[context_col] = "context" col_mapping[question_col] = "question" col_mapping[answers_text_col] = "answers.text" col_mapping[answers_start_col] = "answers.answer_start" with st.form(key="form"): compatible_models = get_compatible_models(selected_task, selected_dataset) selected_models = st.multiselect("Select the models you wish to evaluate", compatible_models) print("Selected models:", selected_models) evaluation_ids = get_evaluation_ids() for idx, model in enumerate(selected_models): eval_info = EvaluationInfo( task=selected_task, model=model, dataset_name=selected_dataset, dataset_config=selected_config, dataset_split=selected_split, ) candidate_id = hash(eval_info) if candidate_id in evaluation_ids: st.info(f"Model {model} has already been evaluated on this configuration. Skipping ...") selected_models.pop(idx) print("Selected models:", selected_models) submit_button = st.form_submit_button("Make submission") if submit_button: project_id = str(uuid.uuid4())[:3] payload = { "username": AUTOTRAIN_USERNAME, "proj_name": f"my-eval-project-{project_id}", "task": TASK_TO_ID[selected_task], "config": { "language": "en", "max_models": 5, "instance": { "provider": "aws", "instance_type": "ml.g4dn.4xlarge", "max_runtime_seconds": 172800, "num_instances": 1, "disk_size_gb": 150, }, "evaluation": { "metrics": [], "models": selected_models, }, }, } print(f"Payload: {payload}") project_json_resp = http_post( path="/projects/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API ).json() print(project_json_resp) if project_json_resp["created"]: payload = { "split": 4, # use "auto" split choice in AutoTrain "col_mapping": col_mapping, "load_config": {"max_size_bytes": 0, "shuffle": False}, } data_json_resp = http_post( path=f"/projects/{project_json_resp['id']}/data/{selected_dataset}", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API, params={"type": "dataset", "config_name": selected_config, "split_name": selected_split}, ).json() print(data_json_resp) if data_json_resp["download_status"] == 1: train_json_resp = http_get( path=f"/projects/{project_json_resp['id']}/data/start_process", token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API, ).json() print(train_json_resp) if train_json_resp["success"]: st.success(f"✅ Successfully submitted evaluation job with project ID {project_id}") st.markdown( f""" Evaluation takes appoximately 1 hour to complete, so grab a ☕ or 🍵 while you wait: * 📊 Click [here](https://huggingface.co/spaces/autoevaluate/leaderboards) to view the results from your submission """ ) else: st.error("🙈 Oh noes, there was an error submitting your submission!")