from datetime import datetime import json import math from typing import Iterator, Union import argparse from io import StringIO import time import os import pathlib import tempfile import zipfile import numpy as np import torch from src.config import VAD_INITIAL_PROMPT_MODE_VALUES, ApplicationConfig, VadInitialPromptMode from src.diarization.diarization import Diarization from src.diarization.diarizationContainer import DiarizationContainer from src.hooks.progressListener import ProgressListener from src.hooks.subTaskProgressListener import SubTaskProgressListener from src.hooks.whisperProgressHook import create_progress_listener_handle from src.languages import _TO_LANGUAGE_CODE, get_language_names, get_language_from_name, get_language_from_code from src.modelCache import ModelCache from src.prompts.jsonPromptStrategy import JsonPromptStrategy from src.prompts.prependPromptStrategy import PrependPromptStrategy from src.source import get_audio_source_collection from src.vadParallel import ParallelContext, ParallelTranscription # External programs import ffmpeg # UI import gradio as gr from src.download import ExceededMaximumDuration, download_url from src.utils import optional_int, slugify, str2bool, write_srt, write_vtt from src.vad import AbstractTranscription, NonSpeechStrategy, PeriodicTranscriptionConfig, TranscriptionConfig, VadPeriodicTranscription, VadSileroTranscription from src.whisper.abstractWhisperContainer import AbstractWhisperContainer from src.whisper.whisperFactory import create_whisper_container from src.nllb.nllbModel import NllbModel from src.nllb.nllbLangs import _TO_NLLB_LANG_CODE from src.nllb.nllbLangs import get_nllb_lang_names from src.nllb.nllbLangs import get_nllb_lang_from_name import shutil import zhconv import tqdm # Configure more application defaults in config.json5 # Gradio seems to truncate files without keeping the extension, so we need to truncate the file prefix ourself MAX_FILE_PREFIX_LENGTH = 17 # Limit auto_parallel to a certain number of CPUs (specify vad_cpu_cores to get a higher number) MAX_AUTO_CPU_CORES = 8 WHISPER_MODELS = ["tiny", "base", "small", "medium", "large", "large-v1", "large-v2", "large-v3"] class VadOptions: def __init__(self, vad: str = None, vadMergeWindow: float = 5, vadMaxMergeSize: float = 150, vadPadding: float = 1, vadPromptWindow: float = 1, vadInitialPromptMode: Union[VadInitialPromptMode, str] = VadInitialPromptMode.PREPREND_FIRST_SEGMENT): self.vad = vad self.vadMergeWindow = vadMergeWindow self.vadMaxMergeSize = vadMaxMergeSize self.vadPadding = vadPadding self.vadPromptWindow = vadPromptWindow self.vadInitialPromptMode = vadInitialPromptMode if isinstance(vadInitialPromptMode, VadInitialPromptMode) \ else VadInitialPromptMode.from_string(vadInitialPromptMode) class WhisperTranscriber: def __init__(self, input_audio_max_duration: float = None, vad_process_timeout: float = None, vad_cpu_cores: int = 1, delete_uploaded_files: bool = False, output_dir: str = None, app_config: ApplicationConfig = None): self.model_cache = ModelCache() self.parallel_device_list = None self.gpu_parallel_context = None self.cpu_parallel_context = None self.vad_process_timeout = vad_process_timeout self.vad_cpu_cores = vad_cpu_cores self.vad_model = None self.inputAudioMaxDuration = input_audio_max_duration self.deleteUploadedFiles = delete_uploaded_files self.output_dir = output_dir # Support for diarization self.diarization: DiarizationContainer = None # Dictionary with parameters to pass to diarization.run - if None, diarization is not enabled self.diarization_kwargs = None self.app_config = app_config def set_parallel_devices(self, vad_parallel_devices: str): self.parallel_device_list = [ device.strip() for device in vad_parallel_devices.split(",") ] if vad_parallel_devices else None def set_auto_parallel(self, auto_parallel: bool): if auto_parallel: if torch.cuda.is_available(): self.parallel_device_list = [ str(gpu_id) for gpu_id in range(torch.cuda.device_count())] self.vad_cpu_cores = min(os.cpu_count(), MAX_AUTO_CPU_CORES) print("[Auto parallel] Using GPU devices " + str(self.parallel_device_list) + " and " + str(self.vad_cpu_cores) + " CPU cores for VAD/transcription.") def set_diarization(self, auth_token: str, enable_daemon_process: bool = True, **kwargs): if self.diarization is None: self.diarization = DiarizationContainer(auth_token=auth_token, enable_daemon_process=enable_daemon_process, auto_cleanup_timeout_seconds=self.app_config.diarization_process_timeout, cache=self.model_cache) # Set parameters self.diarization_kwargs = kwargs def unset_diarization(self): if self.diarization is not None: self.diarization.cleanup() self.diarization_kwargs = None # Entry function for the simple tab def transcribe_webui_simple(self, modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, vad, vadMergeWindow, vadMaxMergeSize, word_timestamps: bool = False, highlight_words: bool = False, diarization: bool = False, diarization_speakers: int = 2, diarization_min_speakers = 1, diarization_max_speakers = 8): return self.transcribe_webui_simple_progress(modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, vad, vadMergeWindow, vadMaxMergeSize, word_timestamps, highlight_words, diarization, diarization_speakers, diarization_min_speakers, diarization_max_speakers) # Entry function for the simple tab progress def transcribe_webui_simple_progress(self, modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, vad, vadMergeWindow, vadMaxMergeSize, word_timestamps: bool = False, highlight_words: bool = False, diarization: bool = False, diarization_speakers: int = 2, diarization_min_speakers = 1, diarization_max_speakers = 8, progress=gr.Progress()): vadOptions = VadOptions(vad, vadMergeWindow, vadMaxMergeSize, self.app_config.vad_padding, self.app_config.vad_prompt_window, self.app_config.vad_initial_prompt_mode) if diarization: if diarization_speakers is not None and diarization_speakers < 1: self.set_diarization(auth_token=self.app_config.auth_token, min_speakers=diarization_min_speakers, max_speakers=diarization_max_speakers) else: self.set_diarization(auth_token=self.app_config.auth_token, num_speakers=diarization_speakers, min_speakers=diarization_min_speakers, max_speakers=diarization_max_speakers) else: self.unset_diarization() return self.transcribe_webui(modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, vadOptions, word_timestamps=word_timestamps, highlight_words=highlight_words, progress=progress) # Entry function for the full tab def transcribe_webui_full(self, modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode, # Word timestamps word_timestamps: bool, highlight_words: bool, prepend_punctuations: str, append_punctuations: str, initial_prompt: str, temperature: float, best_of: int, beam_size: int, patience: float, length_penalty: float, suppress_tokens: str, condition_on_previous_text: bool, fp16: bool, temperature_increment_on_fallback: float, compression_ratio_threshold: float, logprob_threshold: float, no_speech_threshold: float, diarization: bool = False, diarization_speakers: int = 2, diarization_min_speakers = 1, diarization_max_speakers = 8): return self.transcribe_webui_full_progress(modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode, word_timestamps, highlight_words, prepend_punctuations, append_punctuations, initial_prompt, temperature, best_of, beam_size, patience, length_penalty, suppress_tokens, condition_on_previous_text, fp16, temperature_increment_on_fallback, compression_ratio_threshold, logprob_threshold, no_speech_threshold, diarization, diarization_speakers, diarization_min_speakers, diarization_max_speakers) # Entry function for the full tab with progress def transcribe_webui_full_progress(self, modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode, # Word timestamps word_timestamps: bool, highlight_words: bool, prepend_punctuations: str, append_punctuations: str, initial_prompt: str, temperature: float, best_of: int, beam_size: int, patience: float, length_penalty: float, suppress_tokens: str, condition_on_previous_text: bool, fp16: bool, temperature_increment_on_fallback: float, compression_ratio_threshold: float, logprob_threshold: float, no_speech_threshold: float, diarization: bool = False, diarization_speakers: int = 2, diarization_min_speakers = 1, diarization_max_speakers = 8, progress=gr.Progress()): # Handle temperature_increment_on_fallback if temperature_increment_on_fallback is not None: temperature = tuple(np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback)) else: temperature = [temperature] vadOptions = VadOptions(vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode) # Set diarization if diarization: if diarization_speakers is not None and diarization_speakers < 1: self.set_diarization(auth_token=self.app_config.auth_token, min_speakers=diarization_min_speakers, max_speakers=diarization_max_speakers) else: self.set_diarization(auth_token=self.app_config.auth_token, num_speakers=diarization_speakers, min_speakers=diarization_min_speakers, max_speakers=diarization_max_speakers) else: self.unset_diarization() return self.transcribe_webui(modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, vadOptions, initial_prompt=initial_prompt, temperature=temperature, best_of=best_of, beam_size=beam_size, patience=patience, length_penalty=length_penalty, suppress_tokens=suppress_tokens, condition_on_previous_text=condition_on_previous_text, fp16=fp16, compression_ratio_threshold=compression_ratio_threshold, logprob_threshold=logprob_threshold, no_speech_threshold=no_speech_threshold, word_timestamps=word_timestamps, prepend_punctuations=prepend_punctuations, append_punctuations=append_punctuations, highlight_words=highlight_words, progress=progress) def transcribe_webui(self, modelName: str, languageName: str, nllbModelName: str, nllbLangName: str, urlData: str, multipleFiles, microphoneData: str, task: str, vadOptions: VadOptions, progress: gr.Progress = None, highlight_words: bool = False, **decodeOptions: dict): try: progress(0, desc="init audio sources") sources = self.__get_source(urlData, multipleFiles, microphoneData) if (len(sources) == 0): raise Exception("init audio sources failed...") try: progress(0, desc="init whisper model") whisper_lang = get_language_from_name(languageName) selectedLanguage = languageName.lower() if languageName is not None and len(languageName) > 0 else None selectedModel = modelName if modelName is not None else "base" model = create_whisper_container(whisper_implementation=self.app_config.whisper_implementation, model_name=selectedModel, compute_type=self.app_config.compute_type, cache=self.model_cache, models=self.app_config.models) progress(0, desc="init translate model") nllb_lang = get_nllb_lang_from_name(nllbLangName) selectedNllbModelName = nllbModelName if nllbModelName is not None and len(nllbModelName) > 0 else "nllb-200-distilled-600M/facebook" selectedNllbModel = next((modelConfig for modelConfig in self.app_config.nllb_models if modelConfig.name == selectedNllbModelName), None) nllb_model = NllbModel(model_config=selectedNllbModel, whisper_lang=whisper_lang, nllb_lang=nllb_lang) # load_model=True progress(0, desc="init transcribe") # Result download = [] zip_file_lookup = {} text = "" vtt = "" # Write result downloadDirectory = tempfile.mkdtemp() source_index = 0 extra_tasks_count = 1 if nllb_lang is not None else 0 outputDirectory = self.output_dir if self.output_dir is not None else downloadDirectory # Progress total_duration = sum([source.get_audio_duration() for source in sources]) current_progress = 0 # A listener that will report progress to Gradio root_progress_listener = self._create_progress_listener(progress) sub_task_total = 1/(len(sources)+extra_tasks_count*len(sources)) # Execute whisper for idx, source in enumerate(sources): source_prefix = "" source_audio_duration = source.get_audio_duration() if (len(sources) > 1): # Prefix (minimum 2 digits) source_index += 1 source_prefix = str(source_index).zfill(2) + "_" print("Transcribing ", source.source_path) scaled_progress_listener = SubTaskProgressListener(root_progress_listener, base_task_total=1, sub_task_start=idx*1/len(sources), sub_task_total=sub_task_total) # Transcribe result = self.transcribe_file(model, source.source_path, selectedLanguage, task, vadOptions, scaled_progress_listener, **decodeOptions) if whisper_lang is None and result["language"] is not None and len(result["language"]) > 0: whisper_lang = get_language_from_code(result["language"]) nllb_model.whisper_lang = whisper_lang short_name, suffix = source.get_short_name_suffix(max_length=self.app_config.input_max_file_name_length) filePrefix = slugify(source_prefix + short_name, allow_unicode=True) # Update progress current_progress += source_audio_duration source_download, source_text, source_vtt = self.write_result(result, nllb_model, filePrefix + suffix.replace(".", "_"), outputDirectory, highlight_words, scaled_progress_listener) if self.app_config.merge_subtitle_with_sources and self.app_config.output_dir is not None: print("\nmerge subtitle(srt) with source file [" + source.source_name + "]\n") outRsult = "" try: srt_path = source_download[0] save_path = os.path.join(self.app_config.output_dir, filePrefix) # save_without_ext, ext = os.path.splitext(save_path) source_lang = "." + whisper_lang.code if whisper_lang is not None else "" translate_lang = "." + nllb_lang.code if nllb_lang is not None else "" output_with_srt = save_path + source_lang + translate_lang + suffix #ffmpeg -i "input.mp4" -i "input.srt" -c copy -c:s mov_text output.mp4 input_file = ffmpeg.input(source.source_path) input_srt = ffmpeg.input(srt_path) out = ffmpeg.output(input_file, input_srt, output_with_srt, vcodec='copy', acodec='copy', scodec='mov_text') outRsult = out.run(overwrite_output=True) except Exception as e: # Ignore error - it's just a cleanup print("Error merge subtitle with source file: \n" + source.source_path + ", \n" + str(e), outRsult) elif self.app_config.save_downloaded_files and self.app_config.output_dir is not None and urlData: print("Saving downloaded file [" + source.source_name + "]") try: save_path = os.path.join(self.app_config.output_dir, filePrefix) shutil.copy(source.source_path, save_path + suffix) except Exception as e: # Ignore error - it's just a cleanup print("Error saving downloaded file: \n" + source.source_path + ", \n" + str(e)) if len(sources) > 1: # Add new line separators if (len(source_text) > 0): source_text += os.linesep + os.linesep if (len(source_vtt) > 0): source_vtt += os.linesep + os.linesep # Append file name to source text too source_text = source.get_full_name() + ":" + os.linesep + source_text source_vtt = source.get_full_name() + ":" + os.linesep + source_vtt # Add to result download.extend(source_download) text += source_text vtt += source_vtt if (len(sources) > 1): # Zip files support at least 260 characters, but we'll play it safe and use 200 zipFilePrefix = slugify(source_prefix + source.get_short_name(max_length=200), allow_unicode=True) # File names in ZIP file can be longer for source_download_file in source_download: # Get file postfix (after last -) filePostfix = os.path.basename(source_download_file).split("-")[-1] zip_file_name = zipFilePrefix + "-" + filePostfix zip_file_lookup[source_download_file] = zip_file_name # Create zip file from all sources if len(sources) > 1: downloadAllPath = os.path.join(downloadDirectory, "All_Output-" + datetime.now().strftime("%Y%m%d-%H%M%S") + ".zip") with zipfile.ZipFile(downloadAllPath, 'w', zipfile.ZIP_DEFLATED) as zip: for download_file in download: # Get file name from lookup zip_file_name = zip_file_lookup.get(download_file, os.path.basename(download_file)) zip.write(download_file, arcname=zip_file_name) download.insert(0, downloadAllPath) return download, text, vtt finally: # Cleanup source if self.deleteUploadedFiles: for source in sources: print("Deleting temporary source file: " + source.source_path) try: os.remove(source.source_path) except Exception as e: # Ignore error - it's just a cleanup print("Error deleting temporary source file: \n" + source.source_path + ", \n" + str(e)) except ExceededMaximumDuration as e: return [], ("[ERROR]: Maximum remote video length is " + str(e.maxDuration) + "s, file was " + str(e.videoDuration) + "s"), "[ERROR]" except Exception as e: import traceback print(traceback.format_exc()) return [], ("Error occurred during transcribe: " + str(e)), "" def transcribe_file(self, model: AbstractWhisperContainer, audio_path: str, language: str, task: str = None, vadOptions: VadOptions = VadOptions(), progressListener: ProgressListener = None, **decodeOptions: dict): initial_prompt = decodeOptions.pop('initial_prompt', None) if progressListener is None: # Default progress listener progressListener = ProgressListener() if ('task' in decodeOptions): task = decodeOptions.pop('task') initial_prompt_mode = vadOptions.vadInitialPromptMode # Set default initial prompt mode if (initial_prompt_mode is None): initial_prompt_mode = VadInitialPromptMode.PREPREND_FIRST_SEGMENT if (initial_prompt_mode == VadInitialPromptMode.PREPEND_ALL_SEGMENTS or initial_prompt_mode == VadInitialPromptMode.PREPREND_FIRST_SEGMENT): # Prepend initial prompt prompt_strategy = PrependPromptStrategy(initial_prompt, initial_prompt_mode) elif (vadOptions.vadInitialPromptMode == VadInitialPromptMode.JSON_PROMPT_MODE): # Use a JSON format to specify the prompt for each segment prompt_strategy = JsonPromptStrategy(initial_prompt) else: raise ValueError("Invalid vadInitialPromptMode: " + initial_prompt_mode) # Callable for processing an audio file whisperCallable = model.create_callback(language, task, prompt_strategy=prompt_strategy, **decodeOptions) # The results if (vadOptions.vad == 'silero-vad'): # Silero VAD where non-speech gaps are transcribed process_gaps = self._create_silero_config(NonSpeechStrategy.CREATE_SEGMENT, vadOptions) result = self.process_vad(audio_path, whisperCallable, self.vad_model, process_gaps, progressListener=progressListener) elif (vadOptions.vad == 'silero-vad-skip-gaps'): # Silero VAD where non-speech gaps are simply ignored skip_gaps = self._create_silero_config(NonSpeechStrategy.SKIP, vadOptions) result = self.process_vad(audio_path, whisperCallable, self.vad_model, skip_gaps, progressListener=progressListener) elif (vadOptions.vad == 'silero-vad-expand-into-gaps'): # Use Silero VAD where speech-segments are expanded into non-speech gaps expand_gaps = self._create_silero_config(NonSpeechStrategy.EXPAND_SEGMENT, vadOptions) result = self.process_vad(audio_path, whisperCallable, self.vad_model, expand_gaps, progressListener=progressListener) elif (vadOptions.vad == 'periodic-vad'): # Very simple VAD - mark every 5 minutes as speech. This makes it less likely that Whisper enters an infinite loop, but # it may create a break in the middle of a sentence, causing some artifacts. periodic_vad = VadPeriodicTranscription() period_config = PeriodicTranscriptionConfig(periodic_duration=vadOptions.vadMaxMergeSize, max_prompt_window=vadOptions.vadPromptWindow) result = self.process_vad(audio_path, whisperCallable, periodic_vad, period_config, progressListener=progressListener) else: if (self._has_parallel_devices()): # Use a simple period transcription instead, as we need to use the parallel context periodic_vad = VadPeriodicTranscription() period_config = PeriodicTranscriptionConfig(periodic_duration=math.inf, max_prompt_window=1) result = self.process_vad(audio_path, whisperCallable, periodic_vad, period_config, progressListener=progressListener) else: # Default VAD result = whisperCallable.invoke(audio_path, 0, None, None, progress_listener=progressListener) # Diarization if self.diarization and self.diarization_kwargs: print("Diarizing ", audio_path) diarization_result = list(self.diarization.run(audio_path, **self.diarization_kwargs)) # Print result print("Diarization result: ") for entry in diarization_result: print(f" start={entry.start:.1f}s stop={entry.end:.1f}s speaker_{entry.speaker}") # Add speakers to result result = self.diarization.mark_speakers(diarization_result, result) return result def _create_progress_listener(self, progress: gr.Progress): if (progress is None): # Dummy progress listener return ProgressListener() class ForwardingProgressListener(ProgressListener): def __init__(self, progress: gr.Progress): self.progress = progress def on_progress(self, current: Union[int, float], total: Union[int, float], desc: str = None): # From 0 to 1 self.progress(current / total, desc=desc) def on_finished(self, desc: str = None): self.progress(1, desc=desc) return ForwardingProgressListener(progress) def process_vad(self, audio_path, whisperCallable, vadModel: AbstractTranscription, vadConfig: TranscriptionConfig, progressListener: ProgressListener = None): if (not self._has_parallel_devices()): # No parallel devices, so just run the VAD and Whisper in sequence return vadModel.transcribe(audio_path, whisperCallable, vadConfig, progressListener=progressListener) gpu_devices = self.parallel_device_list if (gpu_devices is None or len(gpu_devices) == 0): # No GPU devices specified, pass the current environment variable to the first GPU process. This may be NULL. gpu_devices = [os.environ.get("CUDA_VISIBLE_DEVICES", None)] # Create parallel context if needed if (self.gpu_parallel_context is None): # Create a context wih processes and automatically clear the pool after 1 hour of inactivity self.gpu_parallel_context = ParallelContext(num_processes=len(gpu_devices), auto_cleanup_timeout_seconds=self.vad_process_timeout) # We also need a CPU context for the VAD if (self.cpu_parallel_context is None): self.cpu_parallel_context = ParallelContext(num_processes=self.vad_cpu_cores, auto_cleanup_timeout_seconds=self.vad_process_timeout) parallel_vad = ParallelTranscription() return parallel_vad.transcribe_parallel(transcription=vadModel, audio=audio_path, whisperCallable=whisperCallable, config=vadConfig, cpu_device_count=self.vad_cpu_cores, gpu_devices=gpu_devices, cpu_parallel_context=self.cpu_parallel_context, gpu_parallel_context=self.gpu_parallel_context, progress_listener=progressListener) def _has_parallel_devices(self): return (self.parallel_device_list is not None and len(self.parallel_device_list) > 0) or self.vad_cpu_cores > 1 def _concat_prompt(self, prompt1, prompt2): if (prompt1 is None): return prompt2 elif (prompt2 is None): return prompt1 else: return prompt1 + " " + prompt2 def _create_silero_config(self, non_speech_strategy: NonSpeechStrategy, vadOptions: VadOptions): # Use Silero VAD if (self.vad_model is None): self.vad_model = VadSileroTranscription() config = TranscriptionConfig(non_speech_strategy = non_speech_strategy, max_silent_period=vadOptions.vadMergeWindow, max_merge_size=vadOptions.vadMaxMergeSize, segment_padding_left=vadOptions.vadPadding, segment_padding_right=vadOptions.vadPadding, max_prompt_window=vadOptions.vadPromptWindow) return config def write_result(self, result: dict, nllb_model: NllbModel, source_name: str, output_dir: str, highlight_words: bool = False, progressListener: ProgressListener = None): if not os.path.exists(output_dir): os.makedirs(output_dir) text = result["text"] segments = result["segments"] language = result["language"] languageMaxLineWidth = self.__get_max_line_width(language) if nllb_model.nllb_lang is not None: try: segments_progress_listener = SubTaskProgressListener(progressListener, base_task_total=progressListener.sub_task_total, sub_task_start=1, sub_task_total=1) pbar = tqdm.tqdm(total=len(segments)) perf_start_time = time.perf_counter() nllb_model.load_model() for idx, segment in enumerate(segments): seg_text = segment["text"] if language == "zh": segment["text"] = zhconv.convert(seg_text, "zh-tw") if nllb_model.nllb_lang is not None: segment["text"] = nllb_model.translation(seg_text) pbar.update(1) segments_progress_listener.on_progress(idx+1, len(segments), desc=f"Process segments: {idx}/{len(segments)}") nllb_model.release_vram() perf_end_time = time.perf_counter() # Call the finished callback if segments_progress_listener is not None: segments_progress_listener.on_finished(desc=f"Process segments: {idx}/{len(segments)}") print("\n\nprocess segments took {} seconds.\n\n".format(perf_end_time - perf_start_time)) except Exception as e: # Ignore error - it's just a cleanup print("Error process segments: " + str(e)) print("Max line width " + str(languageMaxLineWidth) + " for language:" + language) vtt = self.__get_subs(result["segments"], "vtt", languageMaxLineWidth, highlight_words=highlight_words) srt = self.__get_subs(result["segments"], "srt", languageMaxLineWidth, highlight_words=highlight_words) json_result = json.dumps(result, indent=4, ensure_ascii=False) if language == "zh" or (nllb_model.nllb_lang is not None and nllb_model.nllb_lang.code == "zho_Hant"): vtt = zhconv.convert(vtt, "zh-tw") srt = zhconv.convert(srt, "zh-tw") text = zhconv.convert(text, "zh-tw") json_result = zhconv.convert(json_result, "zh-tw") output_files = [] output_files.append(self.__create_file(srt, output_dir, source_name + "-subs.srt")); output_files.append(self.__create_file(vtt, output_dir, source_name + "-subs.vtt")); output_files.append(self.__create_file(text, output_dir, source_name + "-transcript.txt")); output_files.append(self.__create_file(json_result, output_dir, source_name + "-result.json")); return output_files, text, vtt def clear_cache(self): self.model_cache.clear() self.vad_model = None def __get_source(self, urlData, multipleFiles, microphoneData): return get_audio_source_collection(urlData, multipleFiles, microphoneData, self.inputAudioMaxDuration) def __get_max_line_width(self, language: str) -> int: if (language and language.lower() in ["japanese", "ja", "chinese", "zh"]): # Chinese characters and kana are wider, so limit line length to 40 characters return 40 else: # TODO: Add more languages # 80 latin characters should fit on a 1080p/720p screen return 80 def __get_subs(self, segments: Iterator[dict], format: str, maxLineWidth: int, highlight_words: bool = False) -> str: segmentStream = StringIO() if format == 'vtt': write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth, highlight_words=highlight_words) elif format == 'srt': write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth, highlight_words=highlight_words) else: raise Exception("Unknown format " + format) segmentStream.seek(0) return segmentStream.read() def __create_file(self, text: str, directory: str, fileName: str) -> str: # Write the text to a file with open(os.path.join(directory, fileName), 'w+', encoding="utf-8") as file: file.write(text) return file.name def close(self): print("Closing parallel contexts") self.clear_cache() if (self.gpu_parallel_context is not None): self.gpu_parallel_context.close() if (self.cpu_parallel_context is not None): self.cpu_parallel_context.close() # Cleanup diarization if (self.diarization is not None): self.diarization.cleanup() self.diarization = None def create_ui(app_config: ApplicationConfig): ui = WhisperTranscriber(app_config.input_audio_max_duration, app_config.vad_process_timeout, app_config.vad_cpu_cores, app_config.delete_uploaded_files, app_config.output_dir, app_config) # Specify a list of devices to use for parallel processing ui.set_parallel_devices(app_config.vad_parallel_devices) ui.set_auto_parallel(app_config.auto_parallel) is_whisper = False if app_config.whisper_implementation == "whisper": implementation_name = "Whisper" is_whisper = True elif app_config.whisper_implementation in ["faster-whisper", "faster_whisper"]: implementation_name = "Faster Whisper" else: # Try to convert from camel-case to title-case implementation_name = app_config.whisper_implementation.title().replace("_", " ").replace("-", " ") ui_description = implementation_name + " is a general-purpose speech recognition model. It is trained on a large dataset of diverse " ui_description += " audio and is also a multi-task model that can perform multilingual speech recognition " ui_description += " as well as speech translation and language identification. " ui_description += "\n\n\n\nFor longer audio files (>10 minutes) not in English, it is recommended that you select Silero VAD (Voice Activity Detector) in the VAD option." # Recommend faster-whisper if is_whisper: ui_description += "\n\n\n\nFor faster inference on GPU, try [faster-whisper](https://huggingface.co/spaces/aadnk/faster-whisper-webui)." if app_config.input_audio_max_duration > 0: ui_description += "\n\n" + "Max audio file length: " + str(app_config.input_audio_max_duration) + " s" ui_article = "Read the [documentation here](https://gitlab.com/aadnk/whisper-webui/-/blob/main/docs/options.md)." ui_article += "\n\nWhisper's Task 'translate' only implements the functionality of translating other languages into English. " ui_article += "OpenAI does not guarantee translations between arbitrary languages. In such cases, you can choose to use the NLLB Model to implement the translation task. " ui_article += "However, it's important to note that the NLLB Model runs slowly, and the completion time may be twice as long as usual. " ui_article += "\n\nThe larger the parameters of the NLLB model, the better its performance is expected to be. " ui_article += "However, it also requires higher computational resources, making it slower to operate. " ui_article += "On the other hand, the version converted from ct2 (CTranslate2) requires lower resources and operates at a faster speed." ui_article += "\n\nCurrently, enabling word-level timestamps cannot be used in conjunction with NLLB Model translation " ui_article += "because Word Timestamps will split the source text, and after translation, it becomes a non-word-level string. " ui_article += "\n\nThe 'mt5-zh-ja-en-trimmed' model is finetuned from Google's 'mt5-base' model. " ui_article += "This model has a relatively good translation speed, but it only supports three languages: Chinese, Japanese, and English. " whisper_models = app_config.get_model_names() nllb_models = app_config.get_nllb_model_names() common_whisper_inputs = lambda : [ gr.Dropdown(label="Whisper Model (for audio)", choices=whisper_models, value=app_config.default_model_name), gr.Dropdown(label="Whisper Language", choices=sorted(get_language_names()), value=app_config.language), ] common_nllb_inputs = lambda : [ gr.Dropdown(label="NLLB Model (for translate)", choices=nllb_models), gr.Dropdown(label="NLLB Language", choices=sorted(get_nllb_lang_names())), ] common_audio_inputs = lambda : [ gr.Text(label="URL (YouTube, etc.)"), gr.File(label="Upload Files", file_count="multiple"), gr.Audio(source="microphone", type="filepath", label="Microphone Input"), gr.Dropdown(choices=["transcribe", "translate"], label="Task", value=app_config.task), ] common_vad_inputs = lambda : [ gr.Dropdown(choices=["none", "silero-vad", "silero-vad-skip-gaps", "silero-vad-expand-into-gaps", "periodic-vad"], value=app_config.default_vad, label="VAD"), gr.Number(label="VAD - Merge Window (s)", precision=0, value=app_config.vad_merge_window), gr.Number(label="VAD - Max Merge Size (s)", precision=0, value=app_config.vad_max_merge_size), ] common_word_timestamps_inputs = lambda : [ gr.Checkbox(label="Word Timestamps", value=app_config.word_timestamps), gr.Checkbox(label="Word Timestamps - Highlight Words", value=app_config.highlight_words), ] has_diarization_libs = Diarization.has_libraries() if not has_diarization_libs: print("Diarization libraries not found - disabling diarization") app_config.diarization = False common_diarization_inputs = lambda : [ gr.Checkbox(label="Diarization", value=app_config.diarization, interactive=has_diarization_libs), gr.Number(label="Diarization - Speakers", precision=0, value=app_config.diarization_speakers, interactive=has_diarization_libs), gr.Number(label="Diarization - Min Speakers", precision=0, value=app_config.diarization_min_speakers, interactive=has_diarization_libs), gr.Number(label="Diarization - Max Speakers", precision=0, value=app_config.diarization_max_speakers, interactive=has_diarization_libs) ] common_output = lambda : [ gr.File(label="Download"), gr.Text(label="Transcription", autoscroll=False), gr.Text(label="Segments", autoscroll=False), ] is_queue_mode = app_config.queue_concurrency_count is not None and app_config.queue_concurrency_count > 0 simple_callback = gr.CSVLogger() with gr.Blocks() as simple_transcribe: gr.Markdown(ui_description) with gr.Row(): with gr.Column(): simple_submit = gr.Button("Submit", variant="primary") with gr.Column(): with gr.Row(): simple_input = common_whisper_inputs() with gr.Row(): simple_input += common_nllb_inputs() with gr.Column(): simple_input += common_audio_inputs() + common_vad_inputs() + common_word_timestamps_inputs() + common_diarization_inputs() with gr.Column(): simple_output = common_output() simple_flag = gr.Button("Flag") gr.Markdown(ui_article) # This needs to be called at some point prior to the first call to callback.flag() simple_callback.setup(simple_input + simple_output, "flagged") simple_submit.click(fn=ui.transcribe_webui_simple_progress if is_queue_mode else ui.transcribe_webui_simple, inputs=simple_input, outputs=simple_output) # We can choose which components to flag -- in this case, we'll flag all of them simple_flag.click(lambda *args: print("simple_callback.flag...") or simple_callback.flag(args), simple_input + simple_output, None, preprocess=False) full_description = ui_description + "\n\n\n\n" + "Be careful when changing some of the options in the full interface - this can cause the model to crash." full_callback = gr.CSVLogger() with gr.Blocks() as full_transcribe: gr.Markdown(full_description) with gr.Row(): with gr.Column(): full_submit = gr.Button("Submit", variant="primary") with gr.Column(): with gr.Row(): full_input1 = common_whisper_inputs() with gr.Row(): full_input1 += common_nllb_inputs() with gr.Column(): full_input1 += common_audio_inputs() + common_vad_inputs() + [ gr.Number(label="VAD - Padding (s)", precision=None, value=app_config.vad_padding), gr.Number(label="VAD - Prompt Window (s)", precision=None, value=app_config.vad_prompt_window), gr.Dropdown(choices=VAD_INITIAL_PROMPT_MODE_VALUES, label="VAD - Initial Prompt Mode")] full_input2 = common_word_timestamps_inputs() + [ gr.Text(label="Word Timestamps - Prepend Punctuations", value=app_config.prepend_punctuations), gr.Text(label="Word Timestamps - Append Punctuations", value=app_config.append_punctuations), gr.TextArea(label="Initial Prompt"), gr.Number(label="Temperature", value=app_config.temperature), gr.Number(label="Best Of - Non-zero temperature", value=app_config.best_of, precision=0), gr.Number(label="Beam Size - Zero temperature", value=app_config.beam_size, precision=0), gr.Number(label="Patience - Zero temperature", value=app_config.patience), gr.Number(label="Length Penalty - Any temperature", value=app_config.length_penalty), gr.Text(label="Suppress Tokens - Comma-separated list of token IDs", value=app_config.suppress_tokens), gr.Checkbox(label="Condition on previous text", value=app_config.condition_on_previous_text), gr.Checkbox(label="FP16", value=app_config.fp16), gr.Number(label="Temperature increment on fallback", value=app_config.temperature_increment_on_fallback), gr.Number(label="Compression ratio threshold", value=app_config.compression_ratio_threshold), gr.Number(label="Logprob threshold", value=app_config.logprob_threshold), gr.Number(label="No speech threshold", value=app_config.no_speech_threshold)] + common_diarization_inputs() with gr.Column(): full_output = common_output() full_flag = gr.Button("Flag") gr.Markdown(ui_article) # This needs to be called at some point prior to the first call to callback.flag() full_callback.setup(full_input1 + full_input2 + full_output, "flagged") full_submit.click(fn=ui.transcribe_webui_full_progress if is_queue_mode else ui.transcribe_webui_full, inputs=full_input1+full_input2, outputs=full_output) # We can choose which components to flag -- in this case, we'll flag all of them full_flag.click(lambda *args: print("full_callback.flag...") or full_callback.flag(args), full_input1 + full_input2 + full_output, None, preprocess=False) demo = gr.TabbedInterface([simple_transcribe, full_transcribe], tab_names=["Simple", "Full"]) # Queue up the demo if is_queue_mode: demo.queue(concurrency_count=app_config.queue_concurrency_count) print("Queue mode enabled (concurrency count: " + str(app_config.queue_concurrency_count) + ")") else: print("Queue mode disabled - progress bars will not be shown.") demo.launch(inbrowser=app_config.autolaunch, share=app_config.share, server_name=app_config.server_name, server_port=app_config.server_port) # Clean up ui.close() if __name__ == '__main__': default_app_config = ApplicationConfig.create_default() whisper_models = default_app_config.get_model_names() nllb_models = default_app_config.get_nllb_model_names() # Environment variable overrides default_whisper_implementation = os.environ.get("WHISPER_IMPLEMENTATION", default_app_config.whisper_implementation) parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--input_audio_max_duration", type=int, default=default_app_config.input_audio_max_duration, \ help="Maximum audio file length in seconds, or -1 for no limit.") # 600 parser.add_argument("--share", type=bool, default=default_app_config.share, \ help="True to share the app on HuggingFace.") # False parser.add_argument("--server_name", type=str, default=default_app_config.server_name, \ help="The host or IP to bind to. If None, bind to localhost.") # None parser.add_argument("--server_port", type=int, default=default_app_config.server_port, \ help="The port to bind to.") # 7860 parser.add_argument("--queue_concurrency_count", type=int, default=default_app_config.queue_concurrency_count, \ help="The number of concurrent requests to process.") # 1 parser.add_argument("--default_model_name", type=str, choices=whisper_models, default=default_app_config.default_model_name, \ help="The default model name.") # medium parser.add_argument("--default_vad", type=str, default=default_app_config.default_vad, \ help="The default VAD.") # silero-vad parser.add_argument("--vad_initial_prompt_mode", type=str, default=default_app_config.vad_initial_prompt_mode, choices=VAD_INITIAL_PROMPT_MODE_VALUES, \ help="Whether or not to prepend the initial prompt to each VAD segment (prepend_all_segments), or just the first segment (prepend_first_segment)") # prepend_first_segment parser.add_argument("--vad_parallel_devices", type=str, default=default_app_config.vad_parallel_devices, \ help="A commma delimited list of CUDA devices to use for parallel processing. If None, disable parallel processing.") # "" parser.add_argument("--vad_cpu_cores", type=int, default=default_app_config.vad_cpu_cores, \ help="The number of CPU cores to use for VAD pre-processing.") # 1 parser.add_argument("--vad_process_timeout", type=float, default=default_app_config.vad_process_timeout, \ help="The number of seconds before inactivate processes are terminated. Use 0 to close processes immediately, or None for no timeout.") # 1800 parser.add_argument("--auto_parallel", type=bool, default=default_app_config.auto_parallel, \ help="True to use all available GPUs and CPU cores for processing. Use vad_cpu_cores/vad_parallel_devices to specify the number of CPU cores/GPUs to use.") # False parser.add_argument("--output_dir", "-o", type=str, default=default_app_config.output_dir, \ help="directory to save the outputs") parser.add_argument("--whisper_implementation", type=str, default=default_whisper_implementation, choices=["whisper", "faster-whisper"],\ help="the Whisper implementation to use") parser.add_argument("--compute_type", type=str, default=default_app_config.compute_type, choices=["default", "auto", "int8", "int8_float16", "int16", "float16", "float32"], \ help="the compute type to use for inference") parser.add_argument("--threads", type=optional_int, default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS") parser.add_argument("--vad_max_merge_size", type=int, default=default_app_config.vad_max_merge_size, \ help="The number of VAD - Max Merge Size (s).") # 30 parser.add_argument("--language", type=str, default=None, choices=sorted(get_language_names()) + sorted([k.title() for k in _TO_LANGUAGE_CODE.keys()]), help="language spoken in the audio, specify None to perform language detection") parser.add_argument("--save_downloaded_files", action='store_true', \ help="True to move downloaded files to outputs directory. This argument will take effect only after output_dir is set.") parser.add_argument("--merge_subtitle_with_sources", action='store_true', \ help="True to merge subtitle(srt) with sources and move the sources files to the outputs directory. This argument will take effect only after output_dir is set.") parser.add_argument("--input_max_file_name_length", type=int, default=100, \ help="Maximum length of a file name.") parser.add_argument("--autolaunch", action='store_true', \ help="open the webui URL in the system's default browser upon launch") parser.add_argument('--auth_token', type=str, default=default_app_config.auth_token, help='HuggingFace API Token (optional)') parser.add_argument("--diarization", type=str2bool, default=default_app_config.diarization, \ help="whether to perform speaker diarization") parser.add_argument("--diarization_num_speakers", type=int, default=default_app_config.diarization_speakers, help="Number of speakers") parser.add_argument("--diarization_min_speakers", type=int, default=default_app_config.diarization_min_speakers, help="Minimum number of speakers") parser.add_argument("--diarization_max_speakers", type=int, default=default_app_config.diarization_max_speakers, help="Maximum number of speakers") parser.add_argument("--diarization_process_timeout", type=int, default=default_app_config.diarization_process_timeout, \ help="Number of seconds before inactivate diarization processes are terminated. Use 0 to close processes immediately, or None for no timeout.") args = parser.parse_args().__dict__ updated_config = default_app_config.update(**args) # updated_config.whisper_implementation = "faster-whisper" # updated_config.input_audio_max_duration = -1 # updated_config.default_model_name = "large-v2" # updated_config.output_dir = "output" # updated_config.vad_max_merge_size = 90 # updated_config.merge_subtitle_with_sources = False # updated_config.autolaunch = True # updated_config.auto_parallel = False # updated_config.save_downloaded_files = True if (threads := args.pop("threads")) > 0: torch.set_num_threads(threads) print("Using whisper implementation: " + updated_config.whisper_implementation) create_ui(app_config=updated_config)