import streamlit as st import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile import plotly.graph_objects as go import streamlit.components.v1 as components from datetime import datetime from audio_recorder_streamlit import audio_recorder from bs4 import BeautifulSoup from collections import defaultdict, deque from dotenv import load_dotenv from gradio_client import Client from huggingface_hub import InferenceClient from io import BytesIO from PIL import Image from PyPDF2 import PdfReader from urllib.parse import quote from xml.etree import ElementTree as ET from openai import OpenAI import extra_streamlit_components as stx from streamlit.runtime.scriptrunner import get_script_run_ctx import asyncio import edge_tts # ๐ฏ 1. Core Configuration & Setup st.set_page_config( page_title="๐ฒBikeAI๐ Claude/GPT Research", page_icon="๐ฒ๐", layout="wide", initial_sidebar_state="auto", menu_items={ 'Get Help': 'https://huggingface.co/awacke1', 'Report a bug': 'https://huggingface.co/spaces/awacke1', 'About': "๐ฒBikeAI๐ Claude/GPT Research AI" } ) load_dotenv() # ๐ 2. API Setup & Clients openai_api_key = os.getenv('OPENAI_API_KEY', "") anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "") xai_key = os.getenv('xai',"") if 'OPENAI_API_KEY' in st.secrets: openai_api_key = st.secrets['OPENAI_API_KEY'] if 'ANTHROPIC_API_KEY' in st.secrets: anthropic_key = st.secrets["ANTHROPIC_API_KEY"] openai.api_key = openai_api_key claude_client = anthropic.Anthropic(api_key=anthropic_key) openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID')) HF_KEY = os.getenv('HF_KEY') API_URL = os.getenv('API_URL') # ๐ 3. Session State Management if 'transcript_history' not in st.session_state: st.session_state['transcript_history'] = [] if 'chat_history' not in st.session_state: st.session_state['chat_history'] = [] if 'openai_model' not in st.session_state: st.session_state['openai_model'] = "gpt-4o-2024-05-13" if 'messages' not in st.session_state: st.session_state['messages'] = [] if 'last_voice_input' not in st.session_state: st.session_state['last_voice_input'] = "" if 'editing_file' not in st.session_state: st.session_state['editing_file'] = None if 'edit_new_name' not in st.session_state: st.session_state['edit_new_name'] = "" if 'edit_new_content' not in st.session_state: st.session_state['edit_new_content'] = "" if 'viewing_prefix' not in st.session_state: st.session_state['viewing_prefix'] = None if 'should_rerun' not in st.session_state: st.session_state['should_rerun'] = False if 'old_val' not in st.session_state: st.session_state['old_val'] = None # ๐จ 4. Custom CSS st.markdown(""" """, unsafe_allow_html=True) FILE_EMOJIS = { "md": "๐", "mp3": "๐ต", } # ๐ง 5. High-Information Content Extraction def get_high_info_terms(text: str) -> list: """Extract high-information terms from text, including key phrases.""" stop_words = set([ 'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'from', 'up', 'about', 'into', 'over', 'after', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would', 'should', 'could', 'might', 'must', 'shall', 'can', 'may', 'this', 'that', 'these', 'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'than', 'too', 'very', 'just', 'there' ]) key_phrases = [ 'artificial intelligence', 'machine learning', 'deep learning', 'neural network', 'personal assistant', 'natural language', 'computer vision', 'data science', 'reinforcement learning', 'knowledge graph', 'semantic search', 'time series', 'large language model', 'transformer model', 'attention mechanism', 'autonomous system', 'edge computing', 'quantum computing', 'blockchain technology', 'cognitive science', 'human computer', 'decision making', 'arxiv search', 'research paper', 'scientific study', 'empirical analysis' ] # Identify key phrases #preserved_phrases = [] #lower_text = text.lower() #for phrase in key_phrases: # if phrase in lower_text: # preserved_phrases.append(phrase) # text = text.replace(phrase, '') # Extract individual words words = re.findall(r'\b\w+(?:-\w+)*\b', text) high_info_words = [ word.lower() for word in words if len(word) > 3 and word.lower() not in stop_words and not word.isdigit() and any(c.isalpha() for c in word) ] #all_terms = preserved_phrases + high_info_words all_terms = high_info_words seen = set() unique_terms = [] for term in all_terms: if term not in seen: seen.add(term) unique_terms.append(term) max_terms = 5 return unique_terms[:max_terms] def clean_text_for_filename(text: str) -> str: """Remove punctuation and short filler words, return a compact string.""" text = text.lower() text = re.sub(r'[^\w\s-]', '', text) words = text.split() stop_short = set(['the','and','for','with','this','that','from','just','very','then','been','only','also','about']) filtered = [w for w in words if len(w)>3 and w not in stop_short] return '_'.join(filtered)[:200] # ๐ 6. File Operations def generate_filename(prompt, response, file_type="md"): """ Generate filename with meaningful terms and short dense clips from prompt & response. The filename should be about 150 chars total, include high-info terms, and a clipped snippet. """ prefix = datetime.now().strftime("%y%m_%H%M") + "_" combined = (prompt + " " + response).strip() info_terms = get_high_info_terms(combined) # Include a short snippet from prompt and response snippet = (prompt[:100] + " " + response[:100]).strip() snippet_cleaned = clean_text_for_filename(snippet) # Combine info terms and snippet name_parts = info_terms + [snippet_cleaned] full_name = '_'.join(name_parts) # Trim to ~150 chars if len(full_name) > 150: full_name = full_name[:150] filename = f"{prefix}{full_name}.{file_type}" return filename def create_file(prompt, response, file_type="md"): """Create file with intelligent naming""" filename = generate_filename(prompt.strip(), response.strip(), file_type) with open(filename, 'w', encoding='utf-8') as f: f.write(prompt + "\n\n" + response) return filename def get_download_link(file): """Generate download link for file""" with open(file, "rb") as f: b64 = base64.b64encode(f.read()).decode() return f'๐ Download {os.path.basename(file)}' # ๐ 7. Audio Processing def clean_for_speech(text: str) -> str: """Clean text for speech synthesis""" text = text.replace("\n", " ") text = text.replace("", " ") text = text.replace("#", "") text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text) text = re.sub(r"\s+", " ", text).strip() return text @st.cache_resource def speech_synthesis_html(result): """Create HTML for speech synthesis""" html_code = f"""
""" components.html(html_code, height=0) async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0): """Generate audio using Edge TTS""" text = clean_for_speech(text) if not text.strip(): return None rate_str = f"{rate:+d}%" pitch_str = f"{pitch:+d}Hz" communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) out_fn = generate_filename(text, text, "mp3") await communicate.save(out_fn) return out_fn def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0): """Wrapper for edge TTS generation""" return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch)) def play_and_download_audio(file_path): """Play and provide download link for audio""" if file_path and os.path.exists(file_path): st.audio(file_path) dl_link = f'Download {os.path.basename(file_path)}' st.markdown(dl_link, unsafe_allow_html=True) # ๐ฌ 8. Media Processing def process_image(image_path, user_prompt): """Process image with GPT-4V""" with open(image_path, "rb") as imgf: image_data = imgf.read() b64img = base64.b64encode(image_data).decode("utf-8") resp = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": [ {"type": "text", "text": user_prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}} ]} ], temperature=0.0, ) return resp.choices[0].message.content def process_audio(audio_path): """Process audio with Whisper""" with open(audio_path, "rb") as f: transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f) st.session_state.messages.append({"role": "user", "content": transcription.text}) return transcription.text def process_video(video_path, seconds_per_frame=1): """Extract frames from video""" vid = cv2.VideoCapture(video_path) total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT)) fps = vid.get(cv2.CAP_PROP_FPS) skip = int(fps*seconds_per_frame) frames_b64 = [] for i in range(0, total, skip): vid.set(cv2.CAP_PROP_POS_FRAMES, i) ret, frame = vid.read() if not ret: break _, buf = cv2.imencode(".jpg", frame) frames_b64.append(base64.b64encode(buf).decode("utf-8")) vid.release() return frames_b64 def process_video_with_gpt(video_path, prompt): """Analyze video frames with GPT-4V""" frames = process_video(video_path) resp = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=[ {"role":"system","content":"Analyze video frames."}, {"role":"user","content":[ {"type":"text","text":prompt}, *[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames] ]} ] ) return resp.choices[0].message.content # ๐ค 9. AI Model Integration def save_full_transcript(query, text): """Save full transcript of Arxiv results as a file.""" create_file(query, text, "md") def parse_arxiv_refs(ref_text: str): """ Parse papers by finding lines with two pipe characters as title lines. Returns list of paper dictionaries with audio files. """ if not ref_text: return [] results = [] current_paper = {} lines = ref_text.split('\n') for i, line in enumerate(lines): # Check if this is a title line (contains exactly 2 pipe characters) if line.count('|') == 2: # If we have a previous paper, add it to results if current_paper: results.append(current_paper) if len(results) >= 20: # Limit to 20 papers break # Parse new paper header try: # Remove ** and split by | header_parts = line.strip('* ').split('|') date = header_parts[0].strip() title = header_parts[1].strip() # Extract arXiv URL if present url_match = re.search(r'(https://arxiv.org/\S+)', line) url = url_match.group(1) if url_match else f"paper_{len(results)}" current_paper = { 'date': date, 'title': title, 'url': url, 'authors': '', 'summary': '', 'content_start': i + 1 # Track where content begins } except Exception as e: st.warning(f"Error parsing paper header: {str(e)}") current_paper = {} continue # If we have a current paper and this isn't a title line, add to content elif current_paper: if not current_paper['authors']: # First line after title is authors current_paper['authors'] = line.strip('* ') else: # Rest is summary if current_paper['summary']: current_paper['summary'] += ' ' + line.strip() else: current_paper['summary'] = line.strip() # Don't forget the last paper if current_paper: results.append(current_paper) return results[:20] # Ensure we return maximum 20 papers def create_paper_audio_files(papers): """ Create audio files for each paper's components and add file paths to paper dict. """ for paper in papers: try: # Generate audio for title title_text = clean_for_speech(paper['title']) title_file = speak_with_edge_tts(title_text) paper['title_audio'] = title_file # Generate audio for full content full_text = f"{paper['title']} by {paper['authors']}. {paper['summary']}" full_text = clean_for_speech(full_text) full_file = speak_with_edge_tts(full_text) paper['full_audio'] = full_file except Exception as e: st.warning(f"Error generating audio for paper {paper['title']}: {str(e)}") paper['title_audio'] = None paper['full_audio'] = None def display_papers(papers): """ Display papers with their audio controls using URLs as unique keys. """ st.write("## Research Papers") for idx, paper in enumerate(papers): with st.expander(f"๐ {paper['title']}", expanded=True): st.markdown(f"**{paper['date']} | {paper['title']} | โฌ๏ธ**") st.markdown(f"*{paper['authors']}*") st.markdown(paper['summary']) # Audio controls in columns col1, col2 = st.columns(2) with col1: if paper.get('title_audio'): st.write("๐๏ธ Title Audio") st.audio(paper['title_audio']) with col2: if paper.get('full_audio'): st.write("๐ Full Paper Audio") st.audio(paper['full_audio']) def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False): """Perform Arxiv search with audio generation per paper.""" start = time.time() # Query the HF RAG pipeline client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") refs = client.predict(q, 20, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md")[0] r2 = client.predict(q, "mistralai/Mixtral-8x7B-Instruct-v0.1", True, api_name="/ask_llm") # Combine for final text output result = f"### ๐ {q}\n\n{r2}\n\n{refs}" st.markdown(result) # Parse and process papers papers = parse_arxiv_refs(refs) if papers: create_paper_audio_files(papers) display_papers(papers) else: st.warning("No papers found in the response.") elapsed = time.time()-start st.write(f"**Total Elapsed:** {elapsed:.2f} s") # Save full transcript create_file(q, result, "md") return result def process_with_gpt(text): """Process text with GPT-4""" if not text: return st.session_state.messages.append({"role":"user","content":text}) with st.chat_message("user"): st.markdown(text) with st.chat_message("assistant"): c = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=st.session_state.messages, stream=False ) ans = c.choices[0].message.content st.write("GPT-4o: " + ans) create_file(text, ans, "md") st.session_state.messages.append({"role":"assistant","content":ans}) return ans def process_with_claude(text): """Process text with Claude""" if not text: return with st.chat_message("user"): st.markdown(text) with st.chat_message("assistant"): r = claude_client.messages.create( model="claude-3-sonnet-20240229", max_tokens=1000, messages=[{"role":"user","content":text}] ) ans = r.content[0].text st.write("Claude-3.5: " + ans) create_file(text, ans, "md") st.session_state.chat_history.append({"user":text,"claude":ans}) return ans # ๐ 10. File Management def create_zip_of_files(md_files, mp3_files): """Create zip with intelligent naming""" md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] all_files = md_files + mp3_files if not all_files: return None # Collect content for high-info term extraction all_content = [] for f in all_files: if f.endswith('.md'): with open(f, 'r', encoding='utf-8') as file: all_content.append(file.read()) elif f.endswith('.mp3'): all_content.append(os.path.basename(f)) combined_content = " ".join(all_content) info_terms = get_high_info_terms(combined_content) timestamp = datetime.now().strftime("%y%m_%H%M") name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:3]) zip_name = f"{timestamp}_{name_text}.zip" with zipfile.ZipFile(zip_name,'w') as z: for f in all_files: z.write(f) return zip_name def load_files_for_sidebar(): """Load and group files for sidebar display""" md_files = glob.glob("*.md") mp3_files = glob.glob("*.mp3") md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] all_files = md_files + mp3_files groups = defaultdict(list) for f in all_files: fname = os.path.basename(f) prefix = fname[:10] groups[prefix].append(f) for prefix in groups: groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True) sorted_prefixes = sorted(groups.keys(), key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]), reverse=True) return groups, sorted_prefixes def extract_keywords_from_md(files): """Extract keywords from markdown files""" text = "" for f in files: if f.endswith(".md"): c = open(f,'r',encoding='utf-8').read() text += " " + c return get_high_info_terms(text) def display_file_manager_sidebar(groups, sorted_prefixes): """Display file manager in sidebar""" st.sidebar.title("๐ต Audio & Docs Manager") all_md = [] all_mp3 = [] for prefix in groups: for f in groups[prefix]: if f.endswith(".md"): all_md.append(f) elif f.endswith(".mp3"): all_mp3.append(f) top_bar = st.sidebar.columns(3) with top_bar[0]: if st.button("๐ DelAllMD"): for f in all_md: os.remove(f) st.session_state.should_rerun = True with top_bar[1]: if st.button("๐ DelAllMP3"): for f in all_mp3: os.remove(f) st.session_state.should_rerun = True with top_bar[2]: if st.button("โฌ๏ธ ZipAll"): z = create_zip_of_files(all_md, all_mp3) if z: st.sidebar.markdown(get_download_link(z),unsafe_allow_html=True) for prefix in sorted_prefixes: files = groups[prefix] kw = extract_keywords_from_md(files) keywords_str = " ".join(kw) if kw else "No Keywords" with st.sidebar.expander(f"{prefix} Files ({len(files)}) - KW: {keywords_str}", expanded=True): c1,c2 = st.columns(2) with c1: if st.button("๐ViewGrp", key="view_group_"+prefix): st.session_state.viewing_prefix = prefix with c2: if st.button("๐DelGrp", key="del_group_"+prefix): for f in files: os.remove(f) st.success(f"Deleted group {prefix}!") st.session_state.should_rerun = True for f in files: fname = os.path.basename(f) ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S") st.write(f"**{fname}** - {ctime}") # ๐ฏ 11. Main Application def main(): st.sidebar.markdown("### ๐ฒBikeAI๐ Multi-Agent Research") tab_main = st.radio("Action:",["๐ค Voice","๐ธ Media","๐ ArXiv","๐ Editor"],horizontal=True) mycomponent = components.declare_component("mycomponent", path="mycomponent") val = mycomponent(my_input_value="Hello") # Show input in a text box for editing if detected if val: val_stripped = val.replace('\\n', ' ') edited_input = st.text_area("โ๏ธ Edit Input:", value=val_stripped, height=100) #edited_input = edited_input.replace('\n', ' ') run_option = st.selectbox("Model:", ["Arxiv", "GPT-4o", "Claude-3.5"]) col1, col2 = st.columns(2) with col1: autorun = st.checkbox("โ AutoRun", value=True) with col2: full_audio = st.checkbox("๐FullAudio", value=False, help="Generate full audio response") input_changed = (val != st.session_state.old_val) if autorun and input_changed: st.session_state.old_val = val if run_option == "Arxiv": perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=full_audio) else: if run_option == "GPT-4o": process_with_gpt(edited_input) elif run_option == "Claude-3.5": process_with_claude(edited_input) else: if st.button("โถ Run"): st.session_state.old_val = val if run_option == "Arxiv": perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=full_audio) else: if run_option == "GPT-4o": process_with_gpt(edited_input) elif run_option == "Claude-3.5": process_with_claude(edited_input) if tab_main == "๐ ArXiv": st.subheader("๐ Query ArXiv") q = st.text_input("๐ Query:") st.markdown("### ๐ Options") vocal_summary = st.checkbox("๐ShortAudio", value=True) extended_refs = st.checkbox("๐LongRefs", value=False) titles_summary = st.checkbox("๐TitlesOnly", value=True) full_audio = st.checkbox("๐FullAudio", value=False, help="Full audio of results") full_transcript = st.checkbox("๐งพFullTranscript", value=False, help="Generate a full transcript file") if q and st.button("๐Run"): result = perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs, titles_summary=titles_summary, full_audio=full_audio) if full_transcript: save_full_transcript(q, result) st.markdown("### Change Prompt & Re-Run") q_new = st.text_input("๐ Modify Query:") if q_new and st.button("๐ Re-Run with Modified Query"): result = perform_ai_lookup(q_new, vocal_summary=vocal_summary, extended_refs=extended_refs, titles_summary=titles_summary, full_audio=full_audio) if full_transcript: save_full_transcript(q_new, result) elif tab_main == "๐ค Voice": st.subheader("๐ค Voice Input") user_text = st.text_area("๐ฌ Message:", height=100) user_text = user_text.strip().replace('\n', ' ') if st.button("๐จ Send"): process_with_gpt(user_text) st.subheader("๐ Chat History") t1,t2=st.tabs(["Claude History","GPT-4o History"]) with t1: for c in st.session_state.chat_history: st.write("**You:**", c["user"]) st.write("**Claude:**", c["claude"]) with t2: for m in st.session_state.messages: with st.chat_message(m["role"]): st.markdown(m["content"]) elif tab_main == "๐ธ Media": st.header("๐ธ Images & ๐ฅ Videos") tabs = st.tabs(["๐ผ Images", "๐ฅ Video"]) with tabs[0]: imgs = glob.glob("*.png")+glob.glob("*.jpg") if imgs: c = st.slider("Cols",1,5,3) cols = st.columns(c) for i,f in enumerate(imgs): with cols[i%c]: st.image(Image.open(f),use_container_width=True) if st.button(f"๐ Analyze {os.path.basename(f)}", key=f"analyze_{f}"): a = process_image(f,"Describe this image.") st.markdown(a) else: st.write("No images found.") with tabs[1]: vids = glob.glob("*.mp4") if vids: for v in vids: with st.expander(f"๐ฅ {os.path.basename(v)}"): st.video(v) if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"): a = process_video_with_gpt(v,"Describe video.") st.markdown(a) else: st.write("No videos found.") elif tab_main == "๐ Editor": if getattr(st.session_state,'current_file',None): st.subheader(f"Editing: {st.session_state.current_file}") new_text = st.text_area("โ๏ธ Content:", st.session_state.file_content, height=300) if st.button("๐พ Save"): with open(st.session_state.current_file,'w',encoding='utf-8') as f: f.write(new_text) st.success("Updated!") st.session_state.should_rerun = True else: st.write("Select a file from the sidebar to edit.") groups, sorted_prefixes = load_files_for_sidebar() display_file_manager_sidebar(groups, sorted_prefixes) if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups: st.write("---") st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}") for f in groups[st.session_state.viewing_prefix]: fname = os.path.basename(f) ext = os.path.splitext(fname)[1].lower().strip('.') st.write(f"### {fname}") if ext == "md": content = open(f,'r',encoding='utf-8').read() st.markdown(content) elif ext == "mp3": st.audio(f) else: st.markdown(get_download_link(f), unsafe_allow_html=True) if st.button("โ Close"): st.session_state.viewing_prefix = None if st.session_state.should_rerun: st.session_state.should_rerun = False st.rerun() if __name__=="__main__": main()