import streamlit as st import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile import plotly.graph_objects as go import streamlit.components.v1 as components from datetime import datetime from audio_recorder_streamlit import audio_recorder from bs4 import BeautifulSoup from collections import defaultdict, deque, Counter from dotenv import load_dotenv from gradio_client import Client from huggingface_hub import InferenceClient from io import BytesIO from PIL import Image from PyPDF2 import PdfReader from urllib.parse import quote from xml.etree import ElementTree as ET from openai import OpenAI import extra_streamlit_components as stx from streamlit.runtime.scriptrunner import get_script_run_ctx import asyncio import edge_tts # π― 1. Core Configuration & Setup st.set_page_config( page_title="π²TalkingAIResearcherπ", page_icon="π²π", layout="wide", initial_sidebar_state="auto", menu_items={ 'Get Help': 'https://huggingface.co/awacke1', 'Report a bug': 'https://huggingface.co/spaces/awacke1', 'About': "π²TalkingAIResearcherπ" } ) load_dotenv() # Add available English voices for Edge TTS EDGE_TTS_VOICES = [ "en-US-AriaNeural", # Default voice "en-US-GuyNeural", "en-US-JennyNeural", "en-GB-SoniaNeural", "en-GB-RyanNeural", "en-AU-NatashaNeural", "en-AU-WilliamNeural", "en-CA-ClaraNeural", "en-CA-LiamNeural" ] # Initialize session state variables if 'tts_voice' not in st.session_state: st.session_state['tts_voice'] = EDGE_TTS_VOICES[0] # Default voice if 'audio_format' not in st.session_state: st.session_state['audio_format'] = 'mp3' # π Default audio format # π 2. API Setup & Clients openai_api_key = os.getenv('OPENAI_API_KEY', "") anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "") xai_key = os.getenv('xai',"") if 'OPENAI_API_KEY' in st.secrets: openai_api_key = st.secrets['OPENAI_API_KEY'] if 'ANTHROPIC_API_KEY' in st.secrets: anthropic_key = st.secrets["ANTHROPIC_API_KEY"] openai.api_key = openai_api_key claude_client = anthropic.Anthropic(api_key=anthropic_key) openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID')) HF_KEY = os.getenv('HF_KEY') API_URL = os.getenv('API_URL') # π 3. Session State Management if 'transcript_history' not in st.session_state: st.session_state['transcript_history'] = [] if 'chat_history' not in st.session_state: st.session_state['chat_history'] = [] if 'openai_model' not in st.session_state: st.session_state['openai_model'] = "gpt-4o-2024-05-13" if 'messages' not in st.session_state: st.session_state['messages'] = [] if 'last_voice_input' not in st.session_state: st.session_state['last_voice_input'] = "" if 'editing_file' not in st.session_state: st.session_state['editing_file'] = None if 'edit_new_name' not in st.session_state: st.session_state['edit_new_name'] = "" if 'edit_new_content' not in st.session_state: st.session_state['edit_new_content'] = "" if 'viewing_prefix' not in st.session_state: st.session_state['viewing_prefix'] = None if 'should_rerun' not in st.session_state: st.session_state['should_rerun'] = False if 'old_val' not in st.session_state: st.session_state['old_val'] = None if 'last_query' not in st.session_state: st.session_state['last_query'] = "" # π Store the last query for zip naming # π¨ 4. Custom CSS st.markdown(""" """, unsafe_allow_html=True) FILE_EMOJIS = { "md": "π", "mp3": "π΅", "wav": "π" # π Add emoji for WAV } # π§ 5. High-Information Content Extraction def get_high_info_terms(text: str, top_n=10) -> list: """Extract high-information terms from text, including key phrases.""" stop_words = set([ 'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'from', 'up', 'about', 'into', 'over', 'after', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would', 'should', 'could', 'might', 'must', 'shall', 'can', 'may', 'this', 'that', 'these', 'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'than', 'too', 'very', 'just', 'there' ]) key_phrases = [ 'artificial intelligence', 'machine learning', 'deep learning', 'neural network', 'personal assistant', 'natural language', 'computer vision', 'data science', 'reinforcement learning', 'knowledge graph', 'semantic search', 'time series', 'large language model', 'transformer model', 'attention mechanism', 'autonomous system', 'edge computing', 'quantum computing', 'blockchain technology', 'cognitive science', 'human computer', 'decision making', 'arxiv search', 'research paper', 'scientific study', 'empirical analysis' ] # Extract bi-grams and uni-grams words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower()) bi_grams = [' '.join(pair) for pair in zip(words, words[1:])] combined = words + bi_grams # Filter out stop words and short words filtered = [ term for term in combined if term not in stop_words and len(term.split()) <= 2 # Limit to uni-grams and bi-grams and any(c.isalpha() for c in term) ] # Count frequencies counter = Counter(filtered) most_common = [term for term, freq in counter.most_common(top_n)] return most_common def clean_text_for_filename(text: str) -> str: """Remove punctuation and short filler words, return a compact string.""" text = text.lower() text = re.sub(r'[^\w\s-]', '', text) words = text.split() stop_short = set(['the','and','for','with','this','that','from','just','very','then','been','only','also','about']) filtered = [w for w in words if len(w)>3 and w not in stop_short] return '_'.join(filtered)[:200] # π 6. File Operations def generate_filename(prompt, response, file_type="md"): """ Generate filename with meaningful terms and short dense clips from prompt & response. The filename should be about 150 chars total, include high-info terms, and a clipped snippet. """ prefix = datetime.now().strftime("%y%m_%H%M") + "_" combined = (prompt + " " + response).strip() info_terms = get_high_info_terms(combined, top_n=10) # Include a short snippet from prompt and response snippet = (prompt[:100] + " " + response[:100]).strip() snippet_cleaned = clean_text_for_filename(snippet) # Combine info terms and snippet name_parts = info_terms + [snippet_cleaned] full_name = '_'.join(name_parts) # Trim to ~150 chars if len(full_name) > 150: full_name = full_name[:150] filename = f"{prefix}{full_name}.{file_type}" return filename def create_file(prompt, response, file_type="md"): """Create file with intelligent naming""" filename = generate_filename(prompt.strip(), response.strip(), file_type) with open(filename, 'w', encoding='utf-8') as f: f.write(prompt + "\n\n" + response) return filename def get_download_link(file, file_type="zip"): """Generate download link for file""" with open(file, "rb") as f: b64 = base64.b64encode(f.read()).decode() if file_type == "zip": return f'π Download {os.path.basename(file)}' elif file_type == "mp3": return f'π΅ Download {os.path.basename(file)}' elif file_type == "wav": return f'π Download {os.path.basename(file)}' # π WAV download link elif file_type == "md": return f'π Download {os.path.basename(file)}' else: return f'Download {os.path.basename(file)}' # π 7. Audio Processing def clean_for_speech(text: str) -> str: """Clean text for speech synthesis""" text = text.replace("\n", " ") text = text.replace("", " ") text = text.replace("#", "") text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text) text = re.sub(r"\s+", " ", text).strip() return text @st.cache_resource def speech_synthesis_html(result): """Create HTML for speech synthesis""" html_code = f"""
""" components.html(html_code, height=0) async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"): """Generate audio using Edge TTS""" text = clean_for_speech(text) if not text.strip(): return None rate_str = f"{rate:+d}%" pitch_str = f"{pitch:+d}Hz" communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) out_fn = generate_filename(text, text, file_type=file_format) await communicate.save(out_fn) return out_fn def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"): """Wrapper for edge TTS generation""" return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch, file_format)) def play_and_download_audio(file_path, file_type="mp3"): """Play and provide download link for audio""" if file_path and os.path.exists(file_path): if file_type == "mp3": st.audio(file_path) elif file_type == "wav": st.audio(file_path) dl_link = get_download_link(file_path, file_type=file_type) st.markdown(dl_link, unsafe_allow_html=True) # π¬ 8. Media Processing def process_image(image_path, user_prompt): """Process image with GPT-4V""" with open(image_path, "rb") as imgf: image_data = imgf.read() b64img = base64.b64encode(image_data).decode("utf-8") resp = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": [ {"type": "text", "text": user_prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}} ]} ], temperature=0.0, ) return resp.choices[0].message.content def process_audio_file(audio_path): """Process audio with Whisper""" with open(audio_path, "rb") as f: transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f) st.session_state.messages.append({"role": "user", "content": transcription.text}) return transcription.text def process_video(video_path, seconds_per_frame=1): """Extract frames from video""" vid = cv2.VideoCapture(video_path) total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT)) fps = vid.get(cv2.CAP_PROP_FPS) skip = int(fps*seconds_per_frame) frames_b64 = [] for i in range(0, total, skip): vid.set(cv2.CAP_PROP_POS_FRAMES, i) ret, frame = vid.read() if not ret: break _, buf = cv2.imencode(".jpg", frame) frames_b64.append(base64.b64encode(buf).decode("utf-8")) vid.release() return frames_b64 def process_video_with_gpt(video_path, prompt): """Analyze video frames with GPT-4V""" frames = process_video(video_path) resp = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=[ {"role":"system","content":"Analyze video frames."}, {"role":"user","content":[ {"type":"text","text":prompt}, *[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames] ]} ] ) return resp.choices[0].message.content # π€ 9. AI Model Integration def save_full_transcript(query, text): """Save full transcript of Arxiv results as a file.""" create_file(query, text, "md") def parse_arxiv_refs(ref_text: str): """ Parse papers by finding lines with two pipe characters as title lines. Returns list of paper dictionaries with audio files. """ if not ref_text: return [] results = [] current_paper = {} lines = ref_text.split('\n') for i, line in enumerate(lines): # Check if this is a title line (contains exactly 2 pipe characters) if line.count('|') == 2: # If we have a previous paper, add it to results if current_paper: results.append(current_paper) if len(results) >= 20: # Limit to 20 papers break # Parse new paper header try: # Remove ** and split by | header_parts = line.strip('* ').split('|') date = header_parts[0].strip() title = header_parts[1].strip() # Extract arXiv URL if present url_match = re.search(r'(https://arxiv.org/\S+)', line) url = url_match.group(1) if url_match else f"paper_{len(results)}" current_paper = { 'date': date, 'title': title, 'url': url, 'authors': '', 'summary': '', 'content_start': i + 1 # Track where content begins } except Exception as e: st.warning(f"Error parsing paper header: {str(e)}") current_paper = {} continue # If we have a current paper and this isn't a title line, add to content elif current_paper: if not current_paper['authors']: # First line after title is authors current_paper['authors'] = line.strip('* ') else: # Rest is summary if current_paper['summary']: current_paper['summary'] += ' ' + line.strip() else: current_paper['summary'] = line.strip() # Don't forget the last paper if current_paper: results.append(current_paper) return results[:20] # Ensure we return maximum 20 papers def create_paper_audio_files(papers, input_question): """ Create audio files for each paper's content and add file paths to paper dict. Also, display each audio as it's generated. """ # Collect all content for combined summary combined_titles = [] for paper in papers: try: # Generate audio for full content only full_text = f"{paper['title']} by {paper['authors']}. {paper['summary']}" full_text = clean_for_speech(full_text) # Determine file format based on user selection file_format = st.session_state['audio_format'] full_file = speak_with_edge_tts(full_text, voice=st.session_state['tts_voice'], file_format=file_format) paper['full_audio'] = full_file # Display the audio immediately after generation st.write(f"### {FILE_EMOJIS.get(file_format, '')} {os.path.basename(full_file)}") play_and_download_audio(full_file, file_type=file_format) combined_titles.append(paper['title']) except Exception as e: st.warning(f"Error generating audio for paper {paper['title']}: {str(e)}") paper['full_audio'] = None # After all individual audios, create a combined summary audio if combined_titles: combined_text = f"Here are the titles of the papers related to your query: {'; '.join(combined_titles)}. Your original question was: {input_question}" file_format = st.session_state['audio_format'] combined_file = speak_with_edge_tts(combined_text, voice=st.session_state['tts_voice'], file_format=file_format) st.write(f"### {FILE_EMOJIS.get(file_format, '')} Combined Summary Audio") play_and_download_audio(combined_file, file_type=file_format) papers.append({'title': 'Combined Summary', 'full_audio': combined_file}) def display_papers(papers): """ Display papers with their audio controls using URLs as unique keys. """ st.write("## Research Papers") papercount=0 for idx, paper in enumerate(papers): papercount = papercount + 1 if (papercount<=20): with st.expander(f"{papercount}. π {paper['title']}", expanded=True): st.markdown(f"**{paper['date']} | {paper['title']} | β¬οΈ**") st.markdown(f"*{paper['authors']}*") st.markdown(paper['summary']) # Single audio control for full content if paper.get('full_audio'): st.write("π Paper Audio") file_ext = os.path.splitext(paper['full_audio'])[1].lower().strip('.') if file_ext == "mp3": st.audio(paper['full_audio']) elif file_ext == "wav": st.audio(paper['full_audio']) def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False): """Perform Arxiv search with audio generation per paper.""" start = time.time() # Query the HF RAG pipeline client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") refs = client.predict(q, 20, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md")[0] r2 = client.predict(q, "mistralai/Mixtral-8x7B-Instruct-v0.1", True, api_name="/ask_llm") # Combine for final text output result = f"### π {q}\n\n{r2}\n\n{refs}" st.markdown(result) # Parse and process papers papers = parse_arxiv_refs(refs) if papers: create_paper_audio_files(papers, input_question=q) display_papers(papers) else: st.warning("No papers found in the response.") elapsed = time.time()-start st.write(f"**Total Elapsed:** {elapsed:.2f} s") # Save full transcript create_file(q, result, "md") return result def process_with_gpt(text): """Process text with GPT-4""" if not text: return st.session_state.messages.append({"role":"user","content":text}) with st.chat_message("user"): st.markdown(text) with st.chat_message("assistant"): c = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=st.session_state.messages, stream=False ) ans = c.choices[0].message.content st.write("GPT-4o: " + ans) create_file(text, ans, "md") st.session_state.messages.append({"role":"assistant","content":ans}) return ans def process_with_claude(text): """Process text with Claude""" if not text: return with st.chat_message("user"): st.markdown(text) with st.chat_message("assistant"): r = claude_client.messages.create( model="claude-3-sonnet-20240229", max_tokens=1000, messages=[{"role":"user","content":text}] ) ans = r.content[0].text st.write("Claude-3.5: " + ans) create_file(text, ans, "md") st.session_state.chat_history.append({"user":text,"claude":ans}) return ans # π 10. File Management def create_zip_of_files(md_files, mp3_files, wav_files, input_question): """Create zip with intelligent naming based on top 10 common words.""" # Exclude 'readme.md' md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] all_files = md_files + mp3_files + wav_files if not all_files: return None # Collect content for high-info term extraction all_content = [] for f in all_files: if f.endswith('.md'): with open(f, 'r', encoding='utf-8') as file: all_content.append(file.read()) elif f.endswith('.mp3') or f.endswith('.wav'): # Replace underscores with spaces and extract basename without extension basename = os.path.splitext(os.path.basename(f))[0] words = basename.replace('_', ' ') all_content.append(words) # Include the input question all_content.append(input_question) combined_content = " ".join(all_content) info_terms = get_high_info_terms(combined_content, top_n=10) timestamp = datetime.now().strftime("%y%m_%H%M") name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:10]) zip_name = f"{timestamp}_{name_text}.zip" with zipfile.ZipFile(zip_name,'w') as z: for f in all_files: z.write(f) return zip_name def load_files_for_sidebar(): """Load and group files for sidebar display""" md_files = glob.glob("*.md") mp3_files = glob.glob("*.mp3") wav_files = glob.glob("*.wav") # π Load WAV files md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] all_files = md_files + mp3_files + wav_files groups = defaultdict(list) for f in all_files: # Treat underscores as spaces and split into words words = os.path.basename(f).replace('_', ' ').split() # Extract keywords from filename keywords = get_high_info_terms(' '.join(words), top_n=5) group_name = '_'.join(keywords) if keywords else 'Miscellaneous' groups[group_name].append(f) # Sort groups based on latest file modification time sorted_groups = sorted(groups.items(), key=lambda x: max(os.path.getmtime(f) for f in x[1]), reverse=True) return sorted_groups def extract_keywords_from_md(files): """Extract keywords from markdown files""" text = "" for f in files: if f.endswith(".md"): c = open(f,'r',encoding='utf-8').read() text += " " + c return get_high_info_terms(text, top_n=5) def display_file_manager_sidebar(groups_sorted): """Display file manager in sidebar""" st.sidebar.title("π΅ Audio & Docs Manager") all_md = [] all_mp3 = [] all_wav = [] # π List to hold WAV files for group_name, files in groups_sorted: for f in files: if f.endswith(".md"): all_md.append(f) elif f.endswith(".mp3"): all_mp3.append(f) elif f.endswith(".wav"): all_wav.append(f) # π Append WAV files top_bar = st.sidebar.columns(4) # π Adjusted columns to accommodate WAV with top_bar[0]: if st.button("π DelAllMD"): for f in all_md: os.remove(f) st.session_state.should_rerun = True with top_bar[1]: if st.button("π DelAllMP3"): for f in all_mp3: os.remove(f) st.session_state.should_rerun = True with top_bar[2]: if st.button("π DelAllWAV"): for f in all_wav: os.remove(f) st.session_state.should_rerun = True with top_bar[3]: if st.button("β¬οΈ ZipAll"): zip_name = create_zip_of_files(all_md, all_mp3, all_wav, input_question=st.session_state.get('last_query', '')) if zip_name: st.sidebar.markdown(get_download_link(zip_name, file_type="zip"), unsafe_allow_html=True) for group_name, files in groups_sorted: keywords_str = group_name.replace('_', ' ') if group_name else "No Keywords" with st.sidebar.expander(f"{FILE_EMOJIS.get('md', '')} {group_name} Files ({len(files)}) - KW: {keywords_str}", expanded=True): c1,c2 = st.columns(2) with c1: if st.button("πViewGrp", key="view_group_"+group_name): st.session_state.viewing_prefix = group_name with c2: if st.button("πDelGrp", key="del_group_"+group_name): for f in files: os.remove(f) st.success(f"Deleted group {group_name}!") st.session_state.should_rerun = True for f in files: fname = os.path.basename(f) ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S") st.write(f"**{fname}** - {ctime}") # π― 11. Main Application def main(): st.sidebar.markdown("### π²BikeAIπ Multi-Agent Research") # Add voice selector to sidebar st.sidebar.markdown("### π€ Voice Settings") selected_voice = st.sidebar.selectbox( "Select TTS Voice:", options=EDGE_TTS_VOICES, index=EDGE_TTS_VOICES.index(st.session_state['tts_voice']) ) # Add audio format selector to sidebar st.sidebar.markdown("### π Audio Format") selected_format = st.sidebar.radio( "Choose Audio Format:", options=["MP3", "WAV"], index=0 # Default to MP3 ) # Update session state if voice or format changes if selected_voice != st.session_state['tts_voice']: st.session_state['tts_voice'] = selected_voice st.rerun() if selected_format.lower() != st.session_state['audio_format']: st.session_state['audio_format'] = selected_format.lower() st.rerun() tab_main = st.radio("Action:",["π€ Voice","πΈ Media","π ArXiv","π Editor"],horizontal=True) mycomponent = components.declare_component("mycomponent", path="mycomponent") val = mycomponent(my_input_value="Hello") # Show input in a text box for editing if detected if val: val_stripped = val.replace('\\n', ' ') edited_input = st.text_area("βοΈ Edit Input:", value=val_stripped, height=100) #edited_input = edited_input.replace('\n', ' ') run_option = st.selectbox("Model:", ["Arxiv", "GPT-4o", "Claude-3.5"]) col1, col2 = st.columns(2) with col1: autorun = st.checkbox("β AutoRun", value=True) with col2: full_audio = st.checkbox("πFullAudio", value=False, help="Generate full audio response") input_changed = (val != st.session_state.old_val) if autorun and input_changed: st.session_state.old_val = val st.session_state.last_query = edited_input # Store the last query for zip naming if run_option == "Arxiv": perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=full_audio) else: if run_option == "GPT-4o": process_with_gpt(edited_input) elif run_option == "Claude-3.5": process_with_claude(edited_input) else: if st.button("βΆ Run"): st.session_state.old_val = val st.session_state.last_query = edited_input # Store the last query for zip naming if run_option == "Arxiv": perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=full_audio) else: if run_option == "GPT-4o": process_with_gpt(edited_input) elif run_option == "Claude-3.5": process_with_claude(edited_input) if tab_main == "π ArXiv": st.subheader("π Query ArXiv") q = st.text_input("π Query:") st.markdown("### π Options") vocal_summary = st.checkbox("πShortAudio", value=True) extended_refs = st.checkbox("πLongRefs", value=False) titles_summary = st.checkbox("πTitlesOnly", value=True) full_audio = st.checkbox("πFullAudio", value=False, help="Full audio of results") full_transcript = st.checkbox("π§ΎFullTranscript", value=False, help="Generate a full transcript file") if q and st.button("πRun"): st.session_state.last_query = q # Store the last query for zip naming result = perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs, titles_summary=titles_summary, full_audio=full_audio) if full_transcript: save_full_transcript(q, result) st.markdown("### Change Prompt & Re-Run") q_new = st.text_input("π Modify Query:") if q_new and st.button("π Re-Run with Modified Query"): st.session_state.last_query = q_new # Update last query result = perform_ai_lookup(q_new, vocal_summary=vocal_summary, extended_refs=extended_refs, titles_summary=titles_summary, full_audio=full_audio) if full_transcript: save_full_transcript(q_new, result) elif tab_main == "π€ Voice": st.subheader("π€ Voice Input") user_text = st.text_area("π¬ Message:", height=100) user_text = user_text.strip().replace('\n', ' ') if st.button("π¨ Send"): process_with_gpt(user_text) st.subheader("π Chat History") t1,t2=st.tabs(["Claude History","GPT-4o History"]) with t1: for c in st.session_state.chat_history: st.write("**You:**", c["user"]) st.write("**Claude:**", c["claude"]) with t2: for m in st.session_state.messages: with st.chat_message(m["role"]): st.markdown(m["content"]) elif tab_main == "πΈ Media": st.header("πΈ Images & π₯ Videos") tabs = st.tabs(["πΌ Images", "π₯ Video"]) with tabs[0]: imgs = glob.glob("*.png")+glob.glob("*.jpg") if imgs: c = st.slider("Cols",1,5,3) cols = st.columns(c) for i,f in enumerate(imgs): with cols[i%c]: st.image(Image.open(f),use_container_width=True) if st.button(f"π Analyze {os.path.basename(f)}", key=f"analyze_{f}"): a = process_image(f,"Describe this image.") st.markdown(a) else: st.write("No images found.") with tabs[1]: vids = glob.glob("*.mp4") if vids: for v in vids: with st.expander(f"π₯ {os.path.basename(v)}"): st.video(v) if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"): a = process_video_with_gpt(v,"Describe video.") st.markdown(a) else: st.write("No videos found.") elif tab_main == "π Editor": if getattr(st.session_state,'current_file',None): st.subheader(f"Editing: {st.session_state.current_file}") new_text = st.text_area("βοΈ Content:", st.session_state.file_content, height=300) if st.button("πΎ Save"): with open(st.session_state.current_file,'w',encoding='utf-8') as f: f.write(new_text) st.success("Updated!") st.session_state.should_rerun = True else: st.write("Select a file from the sidebar to edit.") # Load and display files in the sidebar groups_sorted = load_files_for_sidebar() display_file_manager_sidebar(groups_sorted) if st.session_state.viewing_prefix and any(st.session_state.viewing_prefix == group for group, _ in groups_sorted): st.write("---") st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}") for group_name, files in groups_sorted: if group_name == st.session_state.viewing_prefix: for f in files: fname = os.path.basename(f) ext = os.path.splitext(fname)[1].lower().strip('.') st.write(f"### {fname}") if ext == "md": content = open(f,'r',encoding='utf-8').read() st.markdown(content) elif ext == "mp3": st.audio(f) elif ext == "wav": st.audio(f) # π Handle WAV files else: st.markdown(get_download_link(f), unsafe_allow_html=True) break if st.button("β Close"): st.session_state.viewing_prefix = None markdownPapers = """ # Levels of AGI ## 1. Performance (rows) x Generality (columns) - **Narrow** - *clearly scoped or set of tasks* - **General** - *wide range of non-physical tasks, including metacognitive abilities like learning new skills* ## 2. Levels of AGI ### 2.1 Level 0: No AI - **Narrow Non-AI** - Calculator software; compiler - **General Non-AI** - Human-in-the-loop computing, e.g., Amazon Mechanical Turk ### 2.2 Level 1: Emerging *equal to or somewhat better than an unskilled human* - **Emerging Narrow AI** - GOFAI; simple rule-based systems - Example: SHRDLU - *Reference:* Winograd, T. (1971). **Procedures as a Representation for Data in a Computer Program for Understanding Natural Language**. MIT AI Technical Report. [Link](https://dspace.mit.edu/handle/1721.1/7095) - **Emerging AGI** - ChatGPT (OpenAI, 2023) - Bard (Anil et al., 2023) - *Reference:* Anil, R., et al. (2023). **Bard: Googleβs AI Chatbot**. [arXiv](https://arxiv.org/abs/2303.12712) - LLaMA 2 (Touvron et al., 2023) - *Reference:* Touvron, H., et al. (2023). **LLaMA 2: Open and Efficient Foundation Language Models**. [arXiv](https://arxiv.org/abs/2307.09288) ### 2.3 Level 2: Competent *at least 50th percentile of skilled adults* - **Competent Narrow AI** - Toxicity detectors such as Jigsaw - *Reference:* Das, S., et al. (2022). **Toxicity Detection at Scale with Jigsaw**. [arXiv](https://arxiv.org/abs/2204.06905) - Smart Speakers (Apple, Amazon, Google) - VQA systems (PaLI) - *Reference:* Chen, T., et al. (2023). **PaLI: Pathways Language and Image model**. [arXiv](https://arxiv.org/abs/2301.01298) - Watson (IBM) - SOTA LLMs for subsets of tasks - **Competent AGI** - Not yet achieved ### 2.4 Level 3: Expert *at least 90th percentile of skilled adults* - **Expert Narrow AI** - Spelling & grammar checkers (Grammarly, 2023) - Generative image models - Example: Imagen - *Reference:* Saharia, C., et al. (2022). **Imagen: Photorealistic Text-to-Image Diffusion Models**. [arXiv](https://arxiv.org/abs/2205.11487) - Example: DALLΒ·E 2 - *Reference:* Ramesh, A., et al. (2022). **Hierarchical Text-Conditional Image Generation with CLIP Latents**. [arXiv](https://arxiv.org/abs/2204.06125) - **Expert AGI** - Not yet achieved ### 2.5 Level 4: Virtuoso *at least 99th percentile of skilled adults* - **Virtuoso Narrow AI** - Deep Blue - *Reference:* Campbell, M., et al. (2002). **Deep Blue**. IBM Journal of Research and Development. [Link](https://research.ibm.com/publications/deep-blue) - AlphaGo - *Reference:* Silver, D., et al. (2016, 2017). **Mastering the Game of Go with Deep Neural Networks and Tree Search**. [Nature](https://www.nature.com/articles/nature16961) - **Virtuoso AGI** - Not yet achieved ### 2.6 Level 5: Superhuman *outperforms 100% of humans* - **Superhuman Narrow AI** - AlphaFold - *Reference:* Jumper, J., et al. (2021). **Highly Accurate Protein Structure Prediction with AlphaFold**. [Nature](https://www.nature.com/articles/s41586-021-03819-2) - AlphaZero - *Reference:* Silver, D., et al. (2018). **A General Reinforcement Learning Algorithm that Masters Chess, Shogi, and Go through Self-Play**. [Science](https://www.science.org/doi/10.1126/science.aar6404) - StockFish - *Reference:* Stockfish (2023). **Stockfish Chess Engine**. [Website](https://stockfishchess.org) - **Artificial Superintelligence (ASI)** - Not yet achieved # 𧬠Innovative Architecture of AlphaFold2: A Hybrid System ## 1. π’ Input Sequence - The process starts with an **input sequence** (protein sequence). ## 2. ποΈ Database Searches - **Genetic database search** π - Searches genetic databases to retrieve related sequences. - **Structure database search** π - Searches structural databases for template structures. - **Pairing** π€ - Aligns sequences and structures for further analysis. ## 3. 𧩠MSA (Multiple Sequence Alignment) - **MSA representation** π (r,c) - Representation of multiple aligned sequences used as input. ## 4. π Templates - Template structures are paired to assist the model. ## 5. π Evoformer (48 blocks) - A **deep learning module** that refines representations: - **MSA representation** 𧱠- **Pair representation** 𧱠(r,c) ## 6. 𧱠Structure Module (8 blocks) - Converts the representations into: - **Single representation** (r,c) - **Pair representation** (r,c) ## 7. 𧬠3D Structure Prediction - The structure module predicts the **3D protein structure**. - **Confidence levels**: - π΅ *High confidence* - π *Low confidence* ## 8. β»οΈ Recycling (Three Times) - The model **recycles** its output up to three times to refine the prediction. ## 9. π Reference **Jumper, J., et al. (2021).** Highly Accurate Protein Structure Prediction with AlphaFold. *Nature.* π [Nature Publication Link](https://www.nature.com/articles/s41586-021-03819-2) """ st.sidebar.markdown(markdownPapers) if st.session_state.should_rerun: st.session_state.should_rerun = False st.rerun() if __name__=="__main__": main()