#!/usr/bin/env python3 import os import re import glob import json import base64 import zipfile import random import requests import openai from PIL import Image from urllib.parse import quote import streamlit as st import streamlit.components.v1 as components # If you do model inference via huggingface_hub: # from huggingface_hub import InferenceClient ######################################################################################## # 1) GLOBAL CONFIG & PLACEHOLDERS ######################################################################################## BASE_URL = "https://huggingface.co/spaces/awacke1/MermaidMarkdownDiagramEditor" PromptPrefix = "AI-Search: " PromptPrefix2 = "AI-Refine: " PromptPrefix3 = "AI-JS: " roleplaying_glossary = { "Core Rulebooks": { "Dungeons and Dragons": ["Player's Handbook", "Dungeon Master's Guide", "Monster Manual"], "GURPS": ["Basic Set Characters", "Basic Set Campaigns"] }, "Campaigns & Adventures": { "Pathfinder": ["Rise of the Runelords", "Curse of the Crimson Throne"] } } transhuman_glossary = { "Neural Interfaces": ["Cortex Jack", "Mind-Machine Fusion"], "Cybernetics": ["Robotic Limbs", "Augmented Eyes"], } def process_text(text): """๐Ÿ•ต๏ธ process_text: detective styleโ€”prints lines to Streamlit for debugging.""" st.write(f"process_text called with: {text}") def search_arxiv(text): """๐Ÿ”ญ search_arxiv: pretend to search ArXiv, just prints debug.""" st.write(f"search_arxiv called with: {text}") def SpeechSynthesis(text): """๐Ÿ—ฃ Simple logging for text-to-speech placeholders.""" st.write(f"SpeechSynthesis called with: {text}") def process_image(image_file, prompt): """๐Ÿ“ท Simple placeholder for image AI pipeline.""" return f"[process_image placeholder] {image_file} => {prompt}" def process_video(video_file, seconds_per_frame): """๐ŸŽž Simple placeholder for video AI pipeline.""" st.write(f"[process_video placeholder] {video_file}, {seconds_per_frame} sec/frame") API_URL = "https://huggingface-inference-endpoint-placeholder" API_KEY = "hf_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" @st.cache_resource def InferenceLLM(prompt): """๐Ÿ”ฎ Stub returning mock response for 'prompt'.""" return f"[InferenceLLM placeholder response to prompt: {prompt}]" ######################################################################################## # 2) GLOSSARY & FILE UTILITY ######################################################################################## @st.cache_resource def display_glossary_entity(k): """ Creates multiple link emojis for a single entity. Each link might point to /?q=..., /?q=..., or external sites. """ search_urls = { "๐Ÿš€๐ŸŒŒArXiv": lambda x: f"/?q={quote(x)}", "๐ŸƒAnalyst": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix)}", "๐Ÿ“šPyCoder": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix2)}", "๐Ÿ”ฌJSCoder": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix3)}", "๐Ÿ“–": lambda x: f"https://en.wikipedia.org/wiki/{quote(x)}", "๐Ÿ”": lambda x: f"https://www.google.com/search?q={quote(x)}", "๐Ÿ”Ž": lambda x: f"https://www.bing.com/search?q={quote(x)}", "๐ŸŽฅ": lambda x: f"https://www.youtube.com/results?search_query={quote(x)}", "๐Ÿฆ": lambda x: f"https://twitter.com/search?q={quote(x)}", } links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()]) st.markdown(f"**{k}** {links_md}", unsafe_allow_html=True) def display_content_or_image(query): """ If 'query' is in transhuman_glossary or there's an image matching 'images/.png', show it. Otherwise warn. """ for category, term_list in transhuman_glossary.items(): for term in term_list: if query.lower() in term.lower(): st.subheader(f"Found in {category}:") st.write(term) return True image_path = f"images/{query}.png" if os.path.exists(image_path): st.image(image_path, caption=f"Image for {query}") return True st.warning("No matching content or image found.") return False def clear_query_params(): """Warn about clearing. Full clearing requires a redirect or st.experimental_set_query_params().""" st.warning("Define a redirect or link without query params if you want to truly clear them.") ######################################################################################## # 3) FILE-HANDLING (MD files, etc.) ######################################################################################## def load_file(file_path): """Load file contents as UTF-8 text, or return empty on error.""" try: with open(file_path, "r", encoding='utf-8') as f: return f.read() except: return "" @st.cache_resource def create_zip_of_files(files): """Combine multiple local .md files into a single .zip for user to download.""" zip_name = "Arxiv-Paper-Search-QA-RAG-Streamlit-Gradio-AP.zip" with zipfile.ZipFile(zip_name, 'w') as zipf: for file in files: zipf.write(file) return zip_name @st.cache_resource def get_zip_download_link(zip_file): """Return an link to download the given zip_file (base64-encoded).""" with open(zip_file, 'rb') as f: data = f.read() b64 = base64.b64encode(data).decode() return f'Download All' def get_table_download_link(file_path): """ Creates a download link for a single file from your snippet. Encodes it as base64 data. """ try: with open(file_path, 'r', encoding='utf-8') as file: data = file.read() b64 = base64.b64encode(data.encode()).decode() file_name = os.path.basename(file_path) ext = os.path.splitext(file_name)[1] mime_map = { '.txt': 'text/plain', '.py': 'text/plain', '.xlsx': 'text/plain', '.csv': 'text/plain', '.htm': 'text/html', '.md': 'text/markdown', '.wav': 'audio/wav' } mime_type = mime_map.get(ext, 'application/octet-stream') return f'{file_name}' except: return '' def get_file_size(file_path): """Get file size in bytes.""" return os.path.getsize(file_path) def FileSidebar(): """ Renders .md files, providing open/view/delete/run logic in the sidebar. """ all_files = glob.glob("*.md") # Exclude short-named or special files if needed: all_files = [f for f in all_files if len(os.path.splitext(f)[0]) >= 5] all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) Files1, Files2 = st.sidebar.columns(2) with Files1: if st.button("๐Ÿ—‘ Delete All"): for file in all_files: os.remove(file) st.rerun() with Files2: if st.button("โฌ‡๏ธ Download"): zip_file = create_zip_of_files(all_files) st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True) file_contents = '' file_name = '' next_action = '' for file in all_files: col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) with col1: if st.button("๐ŸŒ", key="md_"+file): file_contents = load_file(file) file_name = file next_action = 'md' st.session_state['next_action'] = next_action with col2: st.markdown(get_table_download_link(file), unsafe_allow_html=True) with col3: if st.button("๐Ÿ“‚", key="open_"+file): file_contents = load_file(file) file_name = file next_action = 'open' st.session_state['lastfilename'] = file st.session_state['filename'] = file st.session_state['filetext'] = file_contents st.session_state['next_action'] = next_action with col4: if st.button("โ–ถ๏ธ", key="read_"+file): file_contents = load_file(file) file_name = file next_action = 'search' st.session_state['next_action'] = next_action with col5: if st.button("๐Ÿ—‘", key="delete_"+file): os.remove(file) st.rerun() if file_contents: if next_action == 'open': open1, open2 = st.columns([0.8,0.2]) with open1: file_name_input = st.text_input('File Name:', file_name, key='file_name_input') file_content_area = st.text_area('File Contents:', file_contents, height=300, key='file_content_area') if st.button('๐Ÿ’พ Save File'): with open(file_name_input, 'w', encoding='utf-8') as f: f.write(file_content_area) st.markdown(f'Saved {file_name_input} successfully.') elif next_action == 'search': file_content_area = st.text_area("File Contents:", file_contents, height=500) user_prompt = PromptPrefix2 + file_contents st.markdown(user_prompt) if st.button('๐Ÿ”Re-Code'): search_arxiv(file_contents) elif next_action == 'md': st.markdown(file_contents) SpeechSynthesis(file_contents) if st.button("๐Ÿ”Run"): st.write("Running GPT logic placeholder...") ######################################################################################## # 4) SCORING / GLOSSARIES ######################################################################################## score_dir = "scores" os.makedirs(score_dir, exist_ok=True) def generate_key(label, header, idx): return f"{header}_{label}_{idx}_key" def update_score(key, increment=1): """ Track a 'score' for each glossary item or term, saved in JSON per key. """ score_file = os.path.join(score_dir, f"{key}.json") if os.path.exists(score_file): with open(score_file, "r") as file: score_data = json.load(file) else: score_data = {"clicks": 0, "score": 0} score_data["clicks"] += increment score_data["score"] += increment with open(score_file, "w") as file: json.dump(score_data, file) return score_data["score"] def load_score(key): file_path = os.path.join(score_dir, f"{key}.json") if os.path.exists(file_path): with open(file_path, "r") as file: score_data = json.load(file) return score_data["score"] return 0 def display_buttons_with_scores(num_columns_text): """ Show glossary items as clickable buttons that increment a 'score'. """ game_emojis = { "Dungeons and Dragons": "๐Ÿ‰", "Call of Cthulhu": "๐Ÿ™", "GURPS": "๐ŸŽฒ", "Pathfinder": "๐Ÿ—บ๏ธ", "Kindred of the East": "๐ŸŒ…", "Changeling": "๐Ÿƒ", } topic_emojis = { "Core Rulebooks": "๐Ÿ“š", "Maps & Settings": "๐Ÿ—บ๏ธ", "Game Mechanics & Tools": "โš™๏ธ", "Monsters & Adversaries": "๐Ÿ‘น", "Campaigns & Adventures": "๐Ÿ“œ", "Creatives & Assets": "๐ŸŽจ", "Game Master Resources": "๐Ÿ› ๏ธ", "Lore & Background": "๐Ÿ“–", "Character Development": "๐Ÿง", "Homebrew Content": "๐Ÿ”ง", "General Topics": "๐ŸŒ", } for category, games in roleplaying_glossary.items(): category_emoji = topic_emojis.get(category, "๐Ÿ”") st.markdown(f"## {category_emoji} {category}") for game, terms in games.items(): game_emoji = game_emojis.get(game, "๐ŸŽฎ") for term in terms: key = f"{category}_{game}_{term}".replace(' ', '_').lower() score_val = load_score(key) if st.button(f"{game_emoji} {category} {game} {term} {score_val}", key=key): newscore = update_score(key.replace('?', '')) st.markdown(f"Scored **{category} - {game} - {term}** -> {newscore}") ######################################################################################## # 5) IMAGES & VIDEOS ######################################################################################## def display_images_and_wikipedia_summaries(num_columns=4): """Display .png images in a grid, referencing the name as a 'keyword'.""" image_files = [f for f in os.listdir('.') if f.endswith('.png')] if not image_files: st.write("No PNG images found in the current directory.") return image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0])) cols = st.columns(num_columns) col_index = 0 for image_file in image_files_sorted: with cols[col_index % num_columns]: try: image = Image.open(image_file) st.image(image, use_column_width=True) k = image_file.split('.')[0] display_glossary_entity(k) image_text_input = st.text_input(f"Prompt for {image_file}", key=f"image_prompt_{image_file}") if image_text_input: response = process_image(image_file, image_text_input) st.markdown(response) except: st.write(f"Could not open {image_file}") col_index += 1 def display_videos_and_links(num_columns=4): """Displays all .mp4/.webm in a grid, plus text input for prompts.""" video_files = [f for f in os.listdir('.') if f.endswith(('.mp4', '.webm'))] if not video_files: st.write("No MP4 or WEBM videos found in the current directory.") return video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0])) cols = st.columns(num_columns) col_index = 0 for video_file in video_files_sorted: with cols[col_index % num_columns]: k = video_file.split('.')[0] st.video(video_file, format='video/mp4', start_time=0) display_glossary_entity(k) video_text_input = st.text_input(f"Video Prompt for {video_file}", key=f"video_prompt_{video_file}") if video_text_input: try: seconds_per_frame = 10 process_video(video_file, seconds_per_frame) except ValueError: st.error("Invalid input for seconds per frame!") col_index += 1 ######################################################################################## # 6) MERMAID ######################################################################################## def generate_mermaid_html(mermaid_code: str) -> str: """ Returns HTML that centers the Mermaid diagram, loading from a CDN. """ return f"""
{mermaid_code}
""" def append_model_param(url: str, model_selected: bool) -> str: """ If user checks 'Append ?model=1', we append &model=1 or ?model=1 if not present. """ if not model_selected: return url delimiter = "&" if "?" in url else "?" return f"{url}{delimiter}model=1" def inject_base_url(url: str) -> str: """ If a link does not start with http, prepend your BASE_URL so it becomes an absolute link to huggingface.co/spaces/... """ if url.startswith("http"): return url return f"{BASE_URL}{url}" DEFAULT_MERMAID = r""" flowchart LR U((User ๐Ÿ˜Ž)) -- "Talk ๐Ÿ—ฃ๏ธ" --> LLM[LLM Agent ๐Ÿค–\nExtract Info] click U "?q=User%20๐Ÿ˜Ž" _self click LLM "?q=LLM%20Agent%20Extract%20Info" _blank LLM -- "Query ๐Ÿ”" --> HS[Hybrid Search ๐Ÿ”Ž\nVector+NER+Lexical] click HS "?q=Hybrid%20Search%20Vector+NER+Lexical" _blank HS -- "Reason ๐Ÿค”" --> RE[Reasoning Engine ๐Ÿ› ๏ธ\nNeuralNetwork+Medical] click RE "?q=Reasoning%20Engine%20NeuralNetwork+Medical" _blank RE -- "Link ๐Ÿ“ก" --> KG((Knowledge Graph ๐Ÿ“š\nOntology+GAR+RAG)) click KG "?q=Knowledge%20Graph%20Ontology+GAR+RAG" _blank """ ######################################################################################## # 7) MAIN UI ######################################################################################## def main(): st.set_page_config(page_title="Mermaid + Clickable Links with Base URL", layout="wide") # 1) Query Param Parsing query_params = st.query_params q_list = (query_params.get('q') or query_params.get('query') or ['']) if q_list: q_val = q_list[0].strip() if q_val: # If there's a q= or query= param, do some processing search_payload = PromptPrefix + q_val st.markdown(search_payload) process_text(search_payload) # If 'action' param is present if 'action' in query_params: action_list = query_params['action'] if action_list: action = action_list[0] if action == 'show_message': st.success("Showing a message because 'action=show_message' was found in the URL.") elif action == 'clear': clear_query_params() # If a 'query=' param is present, show content or image if 'query' in query_params: paramQ = query_params['query'][0] display_content_or_image(paramQ) # 2) Let user pick if we want ?model=1 st.sidebar.write("## Diagram Link Settings") model_selected = st.sidebar.checkbox("Append ?model=1 to each link?") # 3) We'll do minimal injection for the "click" lines lines = DEFAULT_MERMAID.strip().split("\n") new_lines = [] for line in lines: if line.strip().startswith("click ") and '"/?' in line: # e.g. click U "/?q=User%20๐Ÿ˜Ž" _self pattern = r'(click\s+\S+\s+)"([^"]+)"\s+(\S+)' match = re.match(pattern, line.strip()) if match: prefix_part = match.group(1) # e.g. "click U " old_url = match.group(2) # e.g. /?q=User%20๐Ÿ˜Ž target = match.group(3) # e.g. _self or _blank new_url = inject_base_url(old_url) new_url = append_model_param(new_url, model_selected) new_line = f'{prefix_part}"{new_url}" {target}' new_lines.append(new_line) else: # If not matched, keep line as is new_lines.append(line) else: new_lines.append(line) final_mermaid = "\n".join(new_lines) # 4) Render the top-centered Mermaid diagram st.sidebar.markdown("**Mermaid Diagram** with Base URL Injection") diagram_html = generate_mermaid_html(final_mermaid) components.html(diagram_html, height=400, scrolling=True) # 5) Two-column layout: Markdown & Mermaid Editors left_col, right_col = st.columns(2) with left_col: st.subheader("Markdown Side ๐Ÿ“") if "markdown_text" not in st.session_state: st.session_state["markdown_text"] = "## Hello!\nYou can type some *Markdown* here.\n" markdown_text = st.text_area( "Edit Markdown:", value=st.session_state["markdown_text"], height=300 ) st.session_state["markdown_text"] = markdown_text # Row of buttons colA, colB = st.columns(2) with colA: if st.button("๐Ÿ”„ Refresh Markdown"): st.write("**Markdown** content refreshed! ๐Ÿฟ") with colB: if st.button("โŒ Clear Markdown"): st.session_state["markdown_text"] = "" st.rerun() st.markdown("---") st.markdown("**Preview:**") st.markdown(markdown_text) with right_col: st.subheader("Mermaid Side ๐Ÿงœโ€โ™‚๏ธ") if "current_mermaid" not in st.session_state: st.session_state["current_mermaid"] = final_mermaid mermaid_input = st.text_area( "Edit Mermaid Code:", value=st.session_state["current_mermaid"], height=300 ) colC, colD = st.columns(2) with colC: if st.button("๐ŸŽจ Refresh Diagram"): st.session_state["current_mermaid"] = mermaid_input st.write("**Mermaid** diagram refreshed! ๐ŸŒˆ") st.rerun() with colD: if st.button("โŒ Clear Mermaid"): st.session_state["current_mermaid"] = "" st.rerun() st.markdown("---") st.markdown("**Mermaid Source:**") st.code(mermaid_input, language="python", line_numbers=True) # 6) Media Galleries st.markdown("---") st.header("Media Galleries") num_columns_images = st.slider("Choose Number of Image Columns", 1, 15, 5, key="num_columns_images") display_images_and_wikipedia_summaries(num_columns_images) num_columns_video = st.slider("Choose Number of Video Columns", 1, 15, 5, key="num_columns_video") display_videos_and_links(num_columns_video) # 7) Optional Extended text interface showExtendedTextInterface = False if showExtendedTextInterface: # e.g. display_glossary_grid(roleplaying_glossary) # num_columns_text = st.slider("Choose Number of Text Columns", 1, 15, 4) # display_buttons_with_scores(num_columns_text) pass # 8) File Sidebar FileSidebar() # 9) Random Title titles = [ "๐Ÿง ๐ŸŽญ Semantic Symphonies & Episodic Encores", "๐ŸŒŒ๐ŸŽผ AI Rhythms of Memory Lane", "๐ŸŽญ๐ŸŽ‰ Cognitive Crescendos & Neural Harmonies", "๐Ÿง ๐ŸŽบ Mnemonic Melodies & Synaptic Grooves", "๐ŸŽผ๐ŸŽธ Straight Outta Cognition", "๐Ÿฅ๐ŸŽป Jazzy Jambalaya of AI Memories", "๐Ÿฐ Semantic Soul & Episodic Essence", "๐Ÿฅ๐ŸŽป The Music Of AI's Mind" ] st.markdown(f"**{random.choice(titles)}**") if __name__ == "__main__": main()