import streamlit as st import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile import plotly.graph_objects as go import streamlit.components.v1 as components from datetime import datetime from audio_recorder_streamlit import audio_recorder from bs4 import BeautifulSoup from collections import deque from dotenv import load_dotenv from gradio_client import Client from huggingface_hub import InferenceClient from io import BytesIO from PIL import Image from PyPDF2 import PdfReader from urllib.parse import quote from xml.etree import ElementTree as ET from openai import OpenAI import extra_streamlit_components as stx from streamlit.runtime.scriptrunner import get_script_run_ctx import asyncio import edge_tts # ensure this is installed (pip install edge-tts) # 🔧 Config & Setup st.set_page_config( page_title="🚲BikeAI🏆 Claude/GPT Research", page_icon="🚲🏆", layout="wide", initial_sidebar_state="auto", menu_items={ 'Get Help': 'https://huggingface.co/awacke1', 'Report a bug': 'https://huggingface.co/spaces/awacke1', 'About': "🚲BikeAI🏆 Claude/GPT Research AI" } ) load_dotenv() openai.api_key = os.getenv('OPENAI_API_KEY') or st.secrets['OPENAI_API_KEY'] anthropic_key = os.getenv("ANTHROPIC_API_KEY_3") or st.secrets["ANTHROPIC_API_KEY"] claude_client = anthropic.Anthropic(api_key=anthropic_key) openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID')) HF_KEY = os.getenv('HF_KEY') API_URL = os.getenv('API_URL') st.session_state.setdefault('transcript_history', []) st.session_state.setdefault('chat_history', []) st.session_state.setdefault('openai_model', "gpt-4o-2024-05-13") st.session_state.setdefault('messages', []) st.session_state.setdefault('last_voice_input', "") # 🎨 Minimal Custom CSS st.markdown(""" """, unsafe_allow_html=True) # 🔑 Common Utilities def generate_filename(prompt, file_type="md"): ctz = pytz.timezone('US/Central') date_str = datetime.now(ctz).strftime("%m%d_%H%M") safe = re.sub(r'[<>:"/\\\\|?*\n]', ' ', prompt) safe = re.sub(r'\s+', ' ', safe).strip()[:90] return f"{date_str}_{safe}.{file_type}" def create_file(filename, prompt, response): with open(filename, 'w', encoding='utf-8') as f: f.write(prompt + "\n\n" + response) def get_download_link(file): with open(file, "rb") as f: b64 = base64.b64encode(f.read()).decode() return f'📂 Download {os.path.basename(file)}' @st.cache_resource def speech_synthesis_html(result): # This old function can remain as a fallback, but we won't use it after integrating EdgeTTS. html_code = f"""
""" components.html(html_code, height=0) #------------add EdgeTTS # --- NEW FUNCTIONS FOR EDGE TTS --- async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0): """ Generate audio from text using Edge TTS and return the path to the MP3 file. """ if not text.strip(): return None rate_str = f"{rate:+d}%" pitch_str = f"{pitch:+d}Hz" communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) out_fn = generate_filename(text,"mp3") await communicate.save(out_fn) return out_fn def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0): """ Synchronous wrapper to call the async TTS generation and return the file path. """ return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch)) def play_and_download_audio(file_path): """ Display an audio player and a download link for the generated MP3 file. """ if file_path and os.path.exists(file_path): st.audio(file_path) st.markdown(get_download_link(file_path), unsafe_allow_html=True) #--------------------------- def process_image(image_path, user_prompt): with open(image_path, "rb") as imgf: image_data = imgf.read() b64img = base64.b64encode(image_data).decode("utf-8") resp = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": [ {"type": "text", "text": user_prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}} ]} ], temperature=0.0, ) return resp.choices[0].message.content def process_audio(audio_path): with open(audio_path, "rb") as f: transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f) st.session_state.messages.append({"role": "user", "content": transcription.text}) return transcription.text def process_video(video_path, seconds_per_frame=1): vid = cv2.VideoCapture(video_path) total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT)) fps = vid.get(cv2.CAP_PROP_FPS) skip = int(fps*seconds_per_frame) frames_b64 = [] for i in range(0, total, skip): vid.set(cv2.CAP_PROP_POS_FRAMES, i) ret, frame = vid.read() if not ret: break _, buf = cv2.imencode(".jpg", frame) frames_b64.append(base64.b64encode(buf).decode("utf-8")) vid.release() return frames_b64 def process_video_with_gpt(video_path, prompt): frames = process_video(video_path) resp = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=[ {"role":"system","content":"Analyze video frames."}, {"role":"user","content":[ {"type":"text","text":prompt}, *[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames] ]} ] ) return resp.choices[0].message.content def search_arxiv(query): st.write("🔍 Searching ArXiv...") client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") r1 = client.predict(prompt=query, llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1", stream_outputs=True, api_name="/ask_llm") st.markdown("### Mistral-8x7B-Instruct-v0.1 Result") st.markdown(r1) r2 = client.predict(prompt=query, llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", stream_outputs=True, api_name="/ask_llm") st.markdown("### Mistral-7B-Instruct-v0.2 Result") st.markdown(r2) return f"{r1}\n\n{r2}" def perform_ai_lookup(q): start = time.time() client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") # Perform a RAG-based search r = client.predict(q,20,"Semantic Search","mistralai/Mixtral-8x7B-Instruct-v0.1",api_name="/update_with_rag_md") refs = r[0] # Ask model for answer r2 = client.predict(q,"mistralai/Mixtral-8x7B-Instruct-v0.1",True,api_name="/ask_llm") result = f"### 🔎 {q}\n\n{r2}\n\n{refs}" st.markdown(result) # Speak main result audio_file_main = speak_with_edge_tts(r2, voice="en-US-AriaNeural", rate=0, pitch=0) st.write("### Audio Output for Main Result") play_and_download_audio(audio_file_main) # Speak references summaries summaries_text = "Here are the summaries from the references: " + refs.replace('"','') audio_file_refs = speak_with_edge_tts(summaries_text, voice="en-US-AriaNeural", rate=0, pitch=0) st.write("### Audio Output for References Summaries") play_and_download_audio(audio_file_refs) # Extract titles from refs and speak them titles = [] for line in refs.split('\n'): m = re.search(r"\[([^\]]+)\]", line) if m: titles.append(m.group(1)) if titles: titles_text = "Here are the titles of the papers: " + ", ".join(titles) audio_file_titles = speak_with_edge_tts(titles_text, voice="en-US-AriaNeural", rate=0, pitch=0) st.write("### Audio Output for Paper Titles") play_and_download_audio(audio_file_titles) elapsed = time.time()-start st.write(f"Elapsed: {elapsed:.2f} s") fn = generate_filename(q,"md") create_file(fn,q,result) return result def process_with_gpt(text): if not text: return st.session_state.messages.append({"role":"user","content":text}) with st.chat_message("user"): st.markdown(text) with st.chat_message("assistant"): c = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=st.session_state.messages, stream=False ) ans = c.choices[0].message.content st.write("GPT-4o: " + ans) create_file(generate_filename(text,"md"),text,ans) st.session_state.messages.append({"role":"assistant","content":ans}) return ans def process_with_claude(text): if not text: return with st.chat_message("user"): st.markdown(text) with st.chat_message("assistant"): r = claude_client.messages.create( model="claude-3-sonnet-20240229", max_tokens=1000, messages=[{"role":"user","content":text}] ) ans = r.content[0].text st.write("Claude: " + ans) create_file(generate_filename(text,"md"),text,ans) st.session_state.chat_history.append({"user":text,"claude":ans}) return ans def create_zip_of_files(): # Include all .md and .mp3 files in the zip md_files = glob.glob("*.md") mp3_files = glob.glob("*.mp3") all_files = md_files + mp3_files zip_name = "all_files.zip" with zipfile.ZipFile(zip_name,'w') as z: for f in all_files: z.write(f) return zip_name def get_media_html(p,typ="video",w="100%"): d = base64.b64encode(open(p,'rb').read()).decode() if typ=="video": return f'' else: return f'' def display_file_manager(): st.sidebar.title("🎵 Audio Files & Documents") st.sidebar.markdown("Here you can find all recorded `.mp3` files and `.md` notes.") # Display .mp3 files in the sidebar mp3_files = sorted(glob.glob("*.mp3"), reverse=True) if mp3_files: st.sidebar.subheader("MP3 Files:") for a in mp3_files: with st.sidebar.expander(f"{os.path.basename(a)}"): # Show audio player st.sidebar.markdown(get_media_html(a,"audio"),unsafe_allow_html=True) # Download link for the MP3 file st.sidebar.markdown(get_download_link(a), unsafe_allow_html=True) # Button to transcribe this file if st.sidebar.button(f"Transcribe {os.path.basename(a)}"): t = process_audio(a) st.sidebar.write("Transcription:") st.sidebar.write(t) else: st.sidebar.write("No MP3 files found.") # Display .md files in the sidebar st.sidebar.subheader("MD Files:") files = sorted(glob.glob("*.md"), reverse=True) if st.sidebar.button("🗑 Delete All MD"): for f in files: os.remove(f) st.experimental_rerun() # Download all as zip (including .mp3 and .md) if st.sidebar.button("⬇️ Download All (.md and .mp3)"): z = create_zip_of_files() st.sidebar.markdown(get_download_link(z),unsafe_allow_html=True) for f in files: col1, col2, col3, col4 = st.sidebar.columns([1,3,1,1]) with col1: if st.sidebar.button("🌐", key="v"+f): st.session_state.current_file = f c = open(f,'r',encoding='utf-8').read() st.write("**Viewing file content:**") st.write(c) with col2: st.sidebar.markdown(get_download_link(f),unsafe_allow_html=True) with col3: if st.sidebar.button("📂", key="e"+f): st.session_state.current_file = f st.session_state.file_content = open(f,'r',encoding='utf-8').read() with col4: if st.sidebar.button("🗑", key="d"+f): os.remove(f) st.experimental_rerun() def main(): st.sidebar.markdown("### 🚲BikeAI🏆 Multi-Agent Research AI") tab_main = st.radio("Action:",["🎤 Voice Input","📸 Media Gallery","🔍 Search ArXiv","📝 File Editor"],horizontal=True) model_choice = st.sidebar.radio("AI Model:", ["Arxiv","GPT-4o","Claude-3","GPT+Claude+Arxiv"], index=0) # Declare the component mycomponent = components.declare_component("mycomponent", path="mycomponent") val = mycomponent(my_input_value="Hello") if val: user_input = val.strip() if user_input: if model_choice == "GPT-4o": process_with_gpt(user_input) elif model_choice == "Claude-3": process_with_claude(user_input) elif model_choice == "Arxiv": st.subheader("Arxiv Only Results:") perform_ai_lookup(user_input) else: col1,col2,col3=st.columns(3) with col1: st.subheader("GPT-4o Omni:") try: process_with_gpt(user_input) except: st.write('GPT 4o error') with col2: st.subheader("Claude-3 Sonnet:") try: process_with_claude(user_input) except: st.write('Claude error') with col3: st.subheader("Arxiv + Mistral:") try: r = perform_ai_lookup(user_input) st.markdown(r) except: st.write("Arxiv error") if tab_main == "🎤 Voice Input": st.subheader("🎤 Voice Recognition") user_text = st.text_area("Message:", height=100) user_text = user_text.strip() if st.button("Send 📨"): if user_text: if model_choice == "GPT-4o": process_with_gpt(user_text) elif model_choice == "Claude-3": process_with_claude(user_text) elif model_choice == "Arxiv": st.subheader("Arxiv Only Results:") perform_ai_lookup(user_text) else: col1,col2,col3=st.columns(3) with col1: st.subheader("GPT-4o Omni:") process_with_gpt(user_text) with col2: st.subheader("Claude-3 Sonnet:") process_with_claude(user_text) with col3: st.subheader("Arxiv & Mistral:") res = perform_ai_lookup(user_text) st.markdown(res) st.subheader("📜 Chat History") t1,t2=st.tabs(["Claude History","GPT-4o History"]) with t1: for c in st.session_state.chat_history: st.write("**You:**", c["user"]) st.write("**Claude:**", c["claude"]) with t2: for m in st.session_state.messages: with st.chat_message(m["role"]): st.markdown(m["content"]) elif tab_main == "📸 Media Gallery": # Only show Images and Videos since Audio is now in sidebar st.header("🎬 Media Gallery - Images and Videos") tabs = st.tabs(["🖼️ Images", "🎥 Video"]) with tabs[0]: imgs = glob.glob("*.png")+glob.glob("*.jpg") if imgs: c = st.slider("Cols",1,5,3) cols = st.columns(c) for i,f in enumerate(imgs): with cols[i%c]: st.image(Image.open(f),use_container_width=True) if st.button(f"👀 Analyze {os.path.basename(f)}"): a = process_image(f,"Describe this image.") st.markdown(a) else: st.write("No images found.") with tabs[1]: vids = glob.glob("*.mp4") if vids: for v in vids: with st.expander(f"🎥 {os.path.basename(v)}"): st.markdown(get_media_html(v,"video"),unsafe_allow_html=True) if st.button(f"Analyze {os.path.basename(v)}"): a = process_video_with_gpt(v,"Describe video.") st.markdown(a) else: st.write("No videos found.") elif tab_main == "🔍 Search ArXiv": q=st.text_input("Research query:") if q: q = q.strip() if q: r=search_arxiv(q) st.markdown(r) elif tab_main == "📝 File Editor": if getattr(st.session_state,'current_file',None): st.subheader(f"Editing: {st.session_state.current_file}") new_text = st.text_area("Content:", st.session_state.file_content, height=300) if st.button("Save"): with open(st.session_state.current_file,'w',encoding='utf-8') as f: f.write(new_text) st.success("Updated!") else: st.write("Select a file from the sidebar to edit.") display_file_manager() if __name__=="__main__": main()