import torch import torch.nn as nn from PIL import Image from torchvision import transforms import torchvision import gradio as gr agirliklar=torchvision.models.EfficientNet_B2_Weights.DEFAULT eff_don=agirliklar.transforms() model=torchvision.models.efficientnet_b2(weights=agirliklar) model.classifier=nn.Sequential(nn.Dropout(p=0.2),nn.Linear(1408,5)) model.load_state_dict(torch.load("model.pth")) class_names=['a_bir', 'b_iki', 'c_üç', 'd_dört', 'e_beş'] def predict(img): """Transforms and performs a prediction on img and returns prediction and time taken. """ # Start the timer # img=Image.open(img) # Transform the target image and add a batch dimension img = eff_don(img).unsqueeze(0) # Put model into evaluation mode and turn on inference mode model.eval() with torch.inference_mode(): # Pass the transformed image through the model and turn the prediction logits into prediction probabilities pred_probs = torch.softmax(model(img), dim=1) # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} # Return the prediction dictionary and prediction time return pred_labels_and_probs