# Ultralytics YOLOv5 🚀, AGPL-3.0 license # Hyperparameters for VOC training # python train.py --batch 128 --weights yolov5m6.pt --data VOC.yaml --epochs 50 --img 512 --hyp hyp.scratch-med.yaml --evolve # See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials # YOLOv5 Hyperparameter Evolution Results # Best generation: 467 # Last generation: 996 # metrics/precision, metrics/recall, metrics/mAP_0.5, metrics/mAP_0.5:0.95, val/box_loss, val/obj_loss, val/cls_loss # 0.87729, 0.85125, 0.91286, 0.72664, 0.0076739, 0.0042529, 0.0013865 lr0: 0.00334 lrf: 0.15135 momentum: 0.74832 weight_decay: 0.00025 warmup_epochs: 3.3835 warmup_momentum: 0.59462 warmup_bias_lr: 0.18657 box: 0.02 cls: 0.21638 cls_pw: 0.5 obj: 0.51728 obj_pw: 0.67198 iou_t: 0.2 anchor_t: 3.3744 fl_gamma: 0.0 hsv_h: 0.01041 hsv_s: 0.54703 hsv_v: 0.27739 degrees: 0.0 translate: 0.04591 scale: 0.75544 shear: 0.0 perspective: 0.0 flipud: 0.0 fliplr: 0.5 mosaic: 0.85834 mixup: 0.04266 copy_paste: 0.0 anchors: 3.412