# 🚀 YOLOv5 Streamlit Deployment [![HitCount](https://hits.dwyl.com/thepbordin/YOLOv5-Streamlit-Deployment.svg?style=flat&show=unique)](http://hits.dwyl.com/thepbordin/YOLOv5-Streamlit-Deployment) A Easy way to deploy [YOLOv5](https://github.com/ultralytics/yolov5) object detection model with [Streamlit](https://streamlit.io/). **Please feel free to use/edit.** code modified by GitHub/thepbordin from GitHub/zhoroh ## ✨ Features - YOLO Weights Source - Load from Local - Download Weights from URL - Example Dataset - Videos - Images - Upload Data - Video - Image - Select computing device (cuda/cpu) ## ⚙️ Installation ### Local Use 1. Install Requirements `pip install -r requirements.txt` 2. Install ffmpeg (for video inferencing) - For Windows [read here](https://www.geeksforgeeks.org/how-to-install-ffmpeg-on-windows/) - For Mac (brew) `brew install ffmpeg` 3. Strart Stremlit ``` cd YOLOv5-Streamlit-Deployment streamlit run app.py ``` ### Streamlit Cloud 1. Edit a configuration in app.py (read ⚙️ Config Instruction) 2. (Optional) Upload example datas in - `example_images` - `example_videos` 4. Deploy on [Streamlit](https://share.streamlit.io/deploy) ## ⚙️ Config Instruction ### Download model from URL 1. Upload model to [Internet Archive](https://archive.org/) 2. Go to your uploaded file page. 3. From `DOWNLOAD OPTIONS` select `SHOW ALL` 4. Right click at .pt and Copy link address. 5. Edit config in [app.py](https://github.com/thepbordin/YOLOv5-Streamlit-Deployment/blob/main/app.py) ```python cfg_enable_url_download = True url = "your_model_url" ``` ### Use local .pt file: Edit config in [app.py](https://github.com/thepbordin/YOLOv5-Streamlit-Deployment/blob/main/app.py) ```python ## CFG cfg_model_path = "models/your_model_name.pt" ``` ## Reference [Yolov5 Real-time Inference using Streamlit](https://github.com/moaaztaha/Yolo-Interface-using-Streamlit)