# Ultralytics YOLOv5 🚀, AGPL-3.0 license """Model validation metrics.""" import numpy as np from ..metrics import ap_per_class def fitness(x): """Evaluates model fitness by a weighted sum of 8 metrics, `x`: [N,8] array, weights: [0.1, 0.9] for mAP and F1.""" w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.1, 0.9] return (x[:, :8] * w).sum(1) def ap_per_class_box_and_mask( tp_m, tp_b, conf, pred_cls, target_cls, plot=False, save_dir=".", names=(), ): """ Args: tp_b: tp of boxes. tp_m: tp of masks. other arguments see `func: ap_per_class`. """ results_boxes = ap_per_class( tp_b, conf, pred_cls, target_cls, plot=plot, save_dir=save_dir, names=names, prefix="Box" )[2:] results_masks = ap_per_class( tp_m, conf, pred_cls, target_cls, plot=plot, save_dir=save_dir, names=names, prefix="Mask" )[2:] return { "boxes": { "p": results_boxes[0], "r": results_boxes[1], "ap": results_boxes[3], "f1": results_boxes[2], "ap_class": results_boxes[4], }, "masks": { "p": results_masks[0], "r": results_masks[1], "ap": results_masks[3], "f1": results_masks[2], "ap_class": results_masks[4], }, } class Metric: def __init__(self) -> None: """Initializes performance metric attributes for precision, recall, F1 score, average precision, and class indices. """ self.p = [] # (nc, ) self.r = [] # (nc, ) self.f1 = [] # (nc, ) self.all_ap = [] # (nc, 10) self.ap_class_index = [] # (nc, ) @property def ap50(self): """ AP@0.5 of all classes. Return: (nc, ) or []. """ return self.all_ap[:, 0] if len(self.all_ap) else [] @property def ap(self): """AP@0.5:0.95 Return: (nc, ) or []. """ return self.all_ap.mean(1) if len(self.all_ap) else [] @property def mp(self): """ Mean precision of all classes. Return: float. """ return self.p.mean() if len(self.p) else 0.0 @property def mr(self): """ Mean recall of all classes. Return: float. """ return self.r.mean() if len(self.r) else 0.0 @property def map50(self): """ Mean AP@0.5 of all classes. Return: float. """ return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0 @property def map(self): """ Mean AP@0.5:0.95 of all classes. Return: float. """ return self.all_ap.mean() if len(self.all_ap) else 0.0 def mean_results(self): """Mean of results, return mp, mr, map50, map.""" return (self.mp, self.mr, self.map50, self.map) def class_result(self, i): """Class-aware result, return p[i], r[i], ap50[i], ap[i]""" return (self.p[i], self.r[i], self.ap50[i], self.ap[i]) def get_maps(self, nc): """Calculates and returns mean Average Precision (mAP) for each class given number of classes `nc`.""" maps = np.zeros(nc) + self.map for i, c in enumerate(self.ap_class_index): maps[c] = self.ap[i] return maps def update(self, results): """ Args: results: tuple(p, r, ap, f1, ap_class) """ p, r, all_ap, f1, ap_class_index = results self.p = p self.r = r self.all_ap = all_ap self.f1 = f1 self.ap_class_index = ap_class_index class Metrics: """Metric for boxes and masks.""" def __init__(self) -> None: """Initializes Metric objects for bounding boxes and masks to compute performance metrics in the Metrics class. """ self.metric_box = Metric() self.metric_mask = Metric() def update(self, results): """ Args: results: Dict{'boxes': Dict{}, 'masks': Dict{}} """ self.metric_box.update(list(results["boxes"].values())) self.metric_mask.update(list(results["masks"].values())) def mean_results(self): """Computes and returns the mean results for both box and mask metrics by summing their individual means.""" return self.metric_box.mean_results() + self.metric_mask.mean_results() def class_result(self, i): """Returns the sum of box and mask metric results for a specified class index `i`.""" return self.metric_box.class_result(i) + self.metric_mask.class_result(i) def get_maps(self, nc): """Calculates and returns the sum of mean average precisions (mAPs) for both box and mask metrics for `nc` classes. """ return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc) @property def ap_class_index(self): """Returns the class index for average precision, shared by both box and mask metrics.""" return self.metric_box.ap_class_index KEYS = [ "train/box_loss", "train/seg_loss", # train loss "train/obj_loss", "train/cls_loss", "metrics/precision(B)", "metrics/recall(B)", "metrics/mAP_0.5(B)", "metrics/mAP_0.5:0.95(B)", # metrics "metrics/precision(M)", "metrics/recall(M)", "metrics/mAP_0.5(M)", "metrics/mAP_0.5:0.95(M)", # metrics "val/box_loss", "val/seg_loss", # val loss "val/obj_loss", "val/cls_loss", "x/lr0", "x/lr1", "x/lr2", ] BEST_KEYS = [ "best/epoch", "best/precision(B)", "best/recall(B)", "best/mAP_0.5(B)", "best/mAP_0.5:0.95(B)", "best/precision(M)", "best/recall(M)", "best/mAP_0.5(M)", "best/mAP_0.5:0.95(M)", ]