# Ultralytics YOLOv5 🚀, AGPL-3.0 license """Experimental modules.""" import math import numpy as np import torch import torch.nn as nn from yolov5.utils.downloads import attempt_download class Sum(nn.Module): """Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070.""" def __init__(self, n, weight=False): """Initializes a module to sum outputs of layers with number of inputs `n` and optional weighting, supporting 2+ inputs. """ super().__init__() self.weight = weight # apply weights boolean self.iter = range(n - 1) # iter object if weight: self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights def forward(self, x): """Processes input through a customizable weighted sum of `n` inputs, optionally applying learned weights.""" y = x[0] # no weight if self.weight: w = torch.sigmoid(self.w) * 2 for i in self.iter: y = y + x[i + 1] * w[i] else: for i in self.iter: y = y + x[i + 1] return y class MixConv2d(nn.Module): """Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595.""" def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): """Initializes MixConv2d with mixed depth-wise convolutional layers, taking input and output channels (c1, c2), kernel sizes (k), stride (s), and channel distribution strategy (equal_ch). """ super().__init__() n = len(k) # number of convolutions if equal_ch: # equal c_ per group i = torch.linspace(0, n - 1e-6, c2).floor() # c2 indices c_ = [(i == g).sum() for g in range(n)] # intermediate channels else: # equal weight.numel() per group b = [c2] + [0] * n a = np.eye(n + 1, n, k=-1) a -= np.roll(a, 1, axis=1) a *= np.array(k) ** 2 a[0] = 1 c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b self.m = nn.ModuleList( [nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)] ) self.bn = nn.BatchNorm2d(c2) self.act = nn.SiLU() def forward(self, x): """Performs forward pass by applying SiLU activation on batch-normalized concatenated convolutional layer outputs. """ return self.act(self.bn(torch.cat([m(x) for m in self.m], 1))) class Ensemble(nn.ModuleList): """Ensemble of models.""" def __init__(self): """Initializes an ensemble of models to be used for aggregated predictions.""" super().__init__() def forward(self, x, augment=False, profile=False, visualize=False): """Performs forward pass aggregating outputs from an ensemble of models..""" y = [module(x, augment, profile, visualize)[0] for module in self] # y = torch.stack(y).max(0)[0] # max ensemble # y = torch.stack(y).mean(0) # mean ensemble y = torch.cat(y, 1) # nms ensemble return y, None # inference, train output def attempt_load(weights, device=None, inplace=True, fuse=True): """ Loads and fuses an ensemble or single YOLOv5 model from weights, handling device placement and model adjustments. Example inputs: weights=[a,b,c] or a single model weights=[a] or weights=a. """ from yolov5.models.yolo import Detect, Model model = Ensemble() for w in weights if isinstance(weights, list) else [weights]: ckpt = torch.load(attempt_download(w), map_location="cpu") # load ckpt = (ckpt.get("ema") or ckpt["model"]).to(device).float() # FP32 model # Model compatibility updates if not hasattr(ckpt, "stride"): ckpt.stride = torch.tensor([32.0]) if hasattr(ckpt, "names") and isinstance(ckpt.names, (list, tuple)): ckpt.names = dict(enumerate(ckpt.names)) # convert to dict model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, "fuse") else ckpt.eval()) # model in eval mode # Module updates for m in model.modules(): t = type(m) if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model): m.inplace = inplace if t is Detect and not isinstance(m.anchor_grid, list): delattr(m, "anchor_grid") setattr(m, "anchor_grid", [torch.zeros(1)] * m.nl) elif t is nn.Upsample and not hasattr(m, "recompute_scale_factor"): m.recompute_scale_factor = None # torch 1.11.0 compatibility # Return model if len(model) == 1: return model[-1] # Return detection ensemble print(f"Ensemble created with {weights}\n") for k in "names", "nc", "yaml": setattr(model, k, getattr(model[0], k)) model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride assert all(model[0].nc == m.nc for m in model), f"Models have different class counts: {[m.nc for m in model]}" return model