# Ultralytics YOLOv5 🚀, AGPL-3.0 license """ YOLO-specific modules. Usage: $ python models/yolo.py --cfg yolov5s.yaml """ import argparse import contextlib import math import os import platform import sys from copy import deepcopy from pathlib import Path import torch import torch.nn as nn FILE = Path(__file__).resolve() ROOT = FILE.parents[1] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH if platform.system() != "Windows": ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from models.common import ( C3, C3SPP, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C3Ghost, C3x, Classify, Concat, Contract, Conv, CrossConv, DetectMultiBackend, DWConv, DWConvTranspose2d, Expand, Focus, GhostBottleneck, GhostConv, Proto, ) from models.experimental import MixConv2d from utils.autoanchor import check_anchor_order from utils.general import LOGGER, check_version, check_yaml, colorstr, make_divisible, print_args from utils.plots import feature_visualization from utils.torch_utils import ( fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device, time_sync, ) try: import thop # for FLOPs computation except ImportError: thop = None class Detect(nn.Module): # YOLOv5 Detect head for detection models stride = None # strides computed during build dynamic = False # force grid reconstruction export = False # export mode def __init__(self, nc=80, anchors=(), ch=(), inplace=True): """Initializes YOLOv5 detection layer with specified classes, anchors, channels, and inplace operations.""" super().__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.empty(0) for _ in range(self.nl)] # init grid self.anchor_grid = [torch.empty(0) for _ in range(self.nl)] # init anchor grid self.register_buffer("anchors", torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2) self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv self.inplace = inplace # use inplace ops (e.g. slice assignment) def forward(self, x): """Processes input through YOLOv5 layers, altering shape for detection: `x(bs, 3, ny, nx, 85)`.""" z = [] # inference output for i in range(self.nl): x[i] = self.m[i](x[i]) # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]: self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) if isinstance(self, Segment): # (boxes + masks) xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4) xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i] # xy wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i] # wh y = torch.cat((xy, wh, conf.sigmoid(), mask), 4) else: # Detect (boxes only) xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4) xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh y = torch.cat((xy, wh, conf), 4) z.append(y.view(bs, self.na * nx * ny, self.no)) return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x) def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, "1.10.0")): """Generates a mesh grid for anchor boxes with optional compatibility for torch versions < 1.10.""" d = self.anchors[i].device t = self.anchors[i].dtype shape = 1, self.na, ny, nx, 2 # grid shape y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t) yv, xv = torch.meshgrid(y, x, indexing="ij") if torch_1_10 else torch.meshgrid(y, x) # torch>=0.7 compatibility grid = torch.stack((xv, yv), 2).expand(shape) - 0.5 # add grid offset, i.e. y = 2.0 * x - 0.5 anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape) return grid, anchor_grid class Segment(Detect): # YOLOv5 Segment head for segmentation models def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), inplace=True): """Initializes YOLOv5 Segment head with options for mask count, protos, and channel adjustments.""" super().__init__(nc, anchors, ch, inplace) self.nm = nm # number of masks self.npr = npr # number of protos self.no = 5 + nc + self.nm # number of outputs per anchor self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv self.proto = Proto(ch[0], self.npr, self.nm) # protos self.detect = Detect.forward def forward(self, x): """Processes input through the network, returning detections and prototypes; adjusts output based on training/export mode. """ p = self.proto(x[0]) x = self.detect(self, x) return (x, p) if self.training else (x[0], p) if self.export else (x[0], p, x[1]) class BaseModel(nn.Module): """YOLOv5 base model.""" def forward(self, x, profile=False, visualize=False): """Executes a single-scale inference or training pass on the YOLOv5 base model, with options for profiling and visualization. """ return self._forward_once(x, profile, visualize) # single-scale inference, train def _forward_once(self, x, profile=False, visualize=False): """Performs a forward pass on the YOLOv5 model, enabling profiling and feature visualization options.""" y, dt = [], [] # outputs for m in self.model: if m.f != -1: # if not from previous layer x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers if profile: self._profile_one_layer(m, x, dt) x = m(x) # run y.append(x if m.i in self.save else None) # save output if visualize: feature_visualization(x, m.type, m.i, save_dir=visualize) return x def _profile_one_layer(self, m, x, dt): """Profiles a single layer's performance by computing GFLOPs, execution time, and parameters.""" c = m == self.model[-1] # is final layer, copy input as inplace fix o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1e9 * 2 if thop else 0 # FLOPs t = time_sync() for _ in range(10): m(x.copy() if c else x) dt.append((time_sync() - t) * 100) if m == self.model[0]: LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module") LOGGER.info(f"{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}") if c: LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total") def fuse(self): """Fuses Conv2d() and BatchNorm2d() layers in the model to improve inference speed.""" LOGGER.info("Fusing layers... ") for m in self.model.modules(): if isinstance(m, (Conv, DWConv)) and hasattr(m, "bn"): m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv delattr(m, "bn") # remove batchnorm m.forward = m.forward_fuse # update forward self.info() return self def info(self, verbose=False, img_size=640): """Prints model information given verbosity and image size, e.g., `info(verbose=True, img_size=640)`.""" model_info(self, verbose, img_size) def _apply(self, fn): """Applies transformations like to(), cpu(), cuda(), half() to model tensors excluding parameters or registered buffers. """ self = super()._apply(fn) m = self.model[-1] # Detect() if isinstance(m, (Detect, Segment)): m.stride = fn(m.stride) m.grid = list(map(fn, m.grid)) if isinstance(m.anchor_grid, list): m.anchor_grid = list(map(fn, m.anchor_grid)) return self class DetectionModel(BaseModel): # YOLOv5 detection model def __init__(self, cfg="yolov5s.yaml", ch=3, nc=None, anchors=None): """Initializes YOLOv5 model with configuration file, input channels, number of classes, and custom anchors.""" super().__init__() if isinstance(cfg, dict): self.yaml = cfg # model dict else: # is *.yaml import yaml # for torch hub self.yaml_file = Path(cfg).name with open(cfg, encoding="ascii", errors="ignore") as f: self.yaml = yaml.safe_load(f) # model dict # Define model ch = self.yaml["ch"] = self.yaml.get("ch", ch) # input channels if nc and nc != self.yaml["nc"]: LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") self.yaml["nc"] = nc # override yaml value if anchors: LOGGER.info(f"Overriding model.yaml anchors with anchors={anchors}") self.yaml["anchors"] = round(anchors) # override yaml value self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist self.names = [str(i) for i in range(self.yaml["nc"])] # default names self.inplace = self.yaml.get("inplace", True) # Build strides, anchors m = self.model[-1] # Detect() if isinstance(m, (Detect, Segment)): def _forward(x): """Passes the input 'x' through the model and returns the processed output.""" return self.forward(x)[0] if isinstance(m, Segment) else self.forward(x) s = 256 # 2x min stride m.inplace = self.inplace m.stride = torch.tensor([s / x.shape[-2] for x in _forward(torch.zeros(1, ch, s, s))]) # forward check_anchor_order(m) m.anchors /= m.stride.view(-1, 1, 1) self.stride = m.stride self._initialize_biases() # only run once # Init weights, biases initialize_weights(self) self.info() LOGGER.info("") def forward(self, x, augment=False, profile=False, visualize=False): """Performs single-scale or augmented inference and may include profiling or visualization.""" if augment: return self._forward_augment(x) # augmented inference, None return self._forward_once(x, profile, visualize) # single-scale inference, train def _forward_augment(self, x): """Performs augmented inference across different scales and flips, returning combined detections.""" img_size = x.shape[-2:] # height, width s = [1, 0.83, 0.67] # scales f = [None, 3, None] # flips (2-ud, 3-lr) y = [] # outputs for si, fi in zip(s, f): xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) yi = self._forward_once(xi)[0] # forward # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save yi = self._descale_pred(yi, fi, si, img_size) y.append(yi) y = self._clip_augmented(y) # clip augmented tails return torch.cat(y, 1), None # augmented inference, train def _descale_pred(self, p, flips, scale, img_size): """De-scales predictions from augmented inference, adjusting for flips and image size.""" if self.inplace: p[..., :4] /= scale # de-scale if flips == 2: p[..., 1] = img_size[0] - p[..., 1] # de-flip ud elif flips == 3: p[..., 0] = img_size[1] - p[..., 0] # de-flip lr else: x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale if flips == 2: y = img_size[0] - y # de-flip ud elif flips == 3: x = img_size[1] - x # de-flip lr p = torch.cat((x, y, wh, p[..., 4:]), -1) return p def _clip_augmented(self, y): """Clips augmented inference tails for YOLOv5 models, affecting first and last tensors based on grid points and layer counts. """ nl = self.model[-1].nl # number of detection layers (P3-P5) g = sum(4**x for x in range(nl)) # grid points e = 1 # exclude layer count i = (y[0].shape[1] // g) * sum(4**x for x in range(e)) # indices y[0] = y[0][:, :-i] # large i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices y[-1] = y[-1][:, i:] # small return y def _initialize_biases(self, cf=None): """ Initializes biases for YOLOv5's Detect() module, optionally using class frequencies (cf). For details see https://arxiv.org/abs/1708.02002 section 3.3. """ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. m = self.model[-1] # Detect() module for mi, s in zip(m.m, m.stride): # from b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) b.data[:, 5 : 5 + m.nc] += ( math.log(0.6 / (m.nc - 0.99999)) if cf is None else torch.log(cf / cf.sum()) ) # cls mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) Model = DetectionModel # retain YOLOv5 'Model' class for backwards compatibility class SegmentationModel(DetectionModel): # YOLOv5 segmentation model def __init__(self, cfg="yolov5s-seg.yaml", ch=3, nc=None, anchors=None): """Initializes a YOLOv5 segmentation model with configurable params: cfg (str) for configuration, ch (int) for channels, nc (int) for num classes, anchors (list).""" super().__init__(cfg, ch, nc, anchors) class ClassificationModel(BaseModel): # YOLOv5 classification model def __init__(self, cfg=None, model=None, nc=1000, cutoff=10): """Initializes YOLOv5 model with config file `cfg`, input channels `ch`, number of classes `nc`, and `cuttoff` index. """ super().__init__() self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg) def _from_detection_model(self, model, nc=1000, cutoff=10): """Creates a classification model from a YOLOv5 detection model, slicing at `cutoff` and adding a classification layer. """ if isinstance(model, DetectMultiBackend): model = model.model # unwrap DetectMultiBackend model.model = model.model[:cutoff] # backbone m = model.model[-1] # last layer ch = m.conv.in_channels if hasattr(m, "conv") else m.cv1.conv.in_channels # ch into module c = Classify(ch, nc) # Classify() c.i, c.f, c.type = m.i, m.f, "models.common.Classify" # index, from, type model.model[-1] = c # replace self.model = model.model self.stride = model.stride self.save = [] self.nc = nc def _from_yaml(self, cfg): """Creates a YOLOv5 classification model from a specified *.yaml configuration file.""" self.model = None def parse_model(d, ch): """Parses a YOLOv5 model from a dict `d`, configuring layers based on input channels `ch` and model architecture.""" LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}") anchors, nc, gd, gw, act, ch_mul = ( d["anchors"], d["nc"], d["depth_multiple"], d["width_multiple"], d.get("activation"), d.get("channel_multiple"), ) if act: Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU() LOGGER.info(f"{colorstr('activation:')} {act}") # print if not ch_mul: ch_mul = 8 na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors no = na * (nc + 5) # number of outputs = anchors * (classes + 5) layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args m = eval(m) if isinstance(m, str) else m # eval strings for j, a in enumerate(args): with contextlib.suppress(NameError): args[j] = eval(a) if isinstance(a, str) else a # eval strings n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain if m in { Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, }: c1, c2 = ch[f], args[0] if c2 != no: # if not output c2 = make_divisible(c2 * gw, ch_mul) args = [c1, c2, *args[1:]] if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}: args.insert(2, n) # number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum(ch[x] for x in f) # TODO: channel, gw, gd elif m in {Detect, Segment}: args.append([ch[x] for x in f]) if isinstance(args[1], int): # number of anchors args[1] = [list(range(args[1] * 2))] * len(f) if m is Segment: args[3] = make_divisible(args[3] * gw, ch_mul) elif m is Contract: c2 = ch[f] * args[0] ** 2 elif m is Expand: c2 = ch[f] // args[0] ** 2 else: c2 = ch[f] m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module t = str(m)[8:-2].replace("__main__.", "") # module type np = sum(x.numel() for x in m_.parameters()) # number params m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params LOGGER.info(f"{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}") # print save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist layers.append(m_) if i == 0: ch = [] ch.append(c2) return nn.Sequential(*layers), sorted(save) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--cfg", type=str, default="yolov5s.yaml", help="model.yaml") parser.add_argument("--batch-size", type=int, default=1, help="total batch size for all GPUs") parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu") parser.add_argument("--profile", action="store_true", help="profile model speed") parser.add_argument("--line-profile", action="store_true", help="profile model speed layer by layer") parser.add_argument("--test", action="store_true", help="test all yolo*.yaml") opt = parser.parse_args() opt.cfg = check_yaml(opt.cfg) # check YAML print_args(vars(opt)) device = select_device(opt.device) # Create model im = torch.rand(opt.batch_size, 3, 640, 640).to(device) model = Model(opt.cfg).to(device) # Options if opt.line_profile: # profile layer by layer model(im, profile=True) elif opt.profile: # profile forward-backward results = profile(input=im, ops=[model], n=3) elif opt.test: # test all models for cfg in Path(ROOT / "models").rglob("yolo*.yaml"): try: _ = Model(cfg) except Exception as e: print(f"Error in {cfg}: {e}") else: # report fused model summary model.fuse()