# Ultralytics YOLOv5 🚀, AGPL-3.0 license """AutoAnchor utils.""" import random import numpy as np import torch import yaml from tqdm import tqdm from yolov5.utils import TryExcept from yolov5.utils.general import LOGGER, TQDM_BAR_FORMAT, colorstr PREFIX = colorstr("AutoAnchor: ") def check_anchor_order(m): """Checks and corrects anchor order against stride in YOLOv5 Detect() module if necessary.""" a = m.anchors.prod(-1).mean(-1).view(-1) # mean anchor area per output layer da = a[-1] - a[0] # delta a ds = m.stride[-1] - m.stride[0] # delta s if da and (da.sign() != ds.sign()): # same order LOGGER.info(f"{PREFIX}Reversing anchor order") m.anchors[:] = m.anchors.flip(0) @TryExcept(f"{PREFIX}ERROR") def check_anchors(dataset, model, thr=4.0, imgsz=640): """Evaluates anchor fit to dataset and adjusts if necessary, supporting customizable threshold and image size.""" m = model.module.model[-1] if hasattr(model, "module") else model.model[-1] # Detect() shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True) scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh def metric(k): # compute metric """Computes ratio metric, anchors above threshold, and best possible recall for YOLOv5 anchor evaluation.""" r = wh[:, None] / k[None] x = torch.min(r, 1 / r).min(2)[0] # ratio metric best = x.max(1)[0] # best_x aat = (x > 1 / thr).float().sum(1).mean() # anchors above threshold bpr = (best > 1 / thr).float().mean() # best possible recall return bpr, aat stride = m.stride.to(m.anchors.device).view(-1, 1, 1) # model strides anchors = m.anchors.clone() * stride # current anchors bpr, aat = metric(anchors.cpu().view(-1, 2)) s = f"\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). " if bpr > 0.98: # threshold to recompute LOGGER.info(f"{s}Current anchors are a good fit to dataset ✅") else: LOGGER.info(f"{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...") na = m.anchors.numel() // 2 # number of anchors anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False) new_bpr = metric(anchors)[0] if new_bpr > bpr: # replace anchors anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors) m.anchors[:] = anchors.clone().view_as(m.anchors) check_anchor_order(m) # must be in pixel-space (not grid-space) m.anchors /= stride s = f"{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)" else: s = f"{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)" LOGGER.info(s) def kmean_anchors(dataset="./data/coco128.yaml", n=9, img_size=640, thr=4.0, gen=1000, verbose=True): """ Creates kmeans-evolved anchors from training dataset. Arguments: dataset: path to data.yaml, or a loaded dataset n: number of anchors img_size: image size used for training thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 gen: generations to evolve anchors using genetic algorithm verbose: print all results Return: k: kmeans evolved anchors Usage: from utils.autoanchor import *; _ = kmean_anchors() """ from scipy.cluster.vq import kmeans npr = np.random thr = 1 / thr def metric(k, wh): # compute metrics """Computes ratio metric, anchors above threshold, and best possible recall for YOLOv5 anchor evaluation.""" r = wh[:, None] / k[None] x = torch.min(r, 1 / r).min(2)[0] # ratio metric # x = wh_iou(wh, torch.tensor(k)) # iou metric return x, x.max(1)[0] # x, best_x def anchor_fitness(k): # mutation fitness """Evaluates fitness of YOLOv5 anchors by computing recall and ratio metrics for an anchor evolution process.""" _, best = metric(torch.tensor(k, dtype=torch.float32), wh) return (best * (best > thr).float()).mean() # fitness def print_results(k, verbose=True): """Sorts and logs kmeans-evolved anchor metrics and best possible recall values for YOLOv5 anchor evaluation.""" k = k[np.argsort(k.prod(1))] # sort small to large x, best = metric(k, wh0) bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr s = ( f"{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n" f"{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, " f"past_thr={x[x > thr].mean():.3f}-mean: " ) for x in k: s += "%i,%i, " % (round(x[0]), round(x[1])) if verbose: LOGGER.info(s[:-2]) return k if isinstance(dataset, str): # *.yaml file with open(dataset, errors="ignore") as f: data_dict = yaml.safe_load(f) # model dict from utils.dataloaders import LoadImagesAndLabels dataset = LoadImagesAndLabels(data_dict["train"], augment=True, rect=True) # Get label wh shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh # Filter i = (wh0 < 3.0).any(1).sum() if i: LOGGER.info(f"{PREFIX}WARNING ⚠️ Extremely small objects found: {i} of {len(wh0)} labels are <3 pixels in size") wh = wh0[(wh0 >= 2.0).any(1)].astype(np.float32) # filter > 2 pixels # wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1 # Kmeans init try: LOGGER.info(f"{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...") assert n <= len(wh) # apply overdetermined constraint s = wh.std(0) # sigmas for whitening k = kmeans(wh / s, n, iter=30)[0] * s # points assert n == len(k) # kmeans may return fewer points than requested if wh is insufficient or too similar except Exception: LOGGER.warning(f"{PREFIX}WARNING ⚠️ switching strategies from kmeans to random init") k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0)) k = print_results(k, verbose=False) # Plot # k, d = [None] * 20, [None] * 20 # for i in tqdm(range(1, 21)): # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True) # ax = ax.ravel() # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh # ax[0].hist(wh[wh[:, 0]<100, 0],400) # ax[1].hist(wh[wh[:, 1]<100, 1],400) # fig.savefig('wh.png', dpi=200) # Evolve f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma pbar = tqdm(range(gen), bar_format=TQDM_BAR_FORMAT) # progress bar for _ in pbar: v = np.ones(sh) while (v == 1).all(): # mutate until a change occurs (prevent duplicates) v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) kg = (k.copy() * v).clip(min=2.0) fg = anchor_fitness(kg) if fg > f: f, k = fg, kg.copy() pbar.desc = f"{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}" if verbose: print_results(k, verbose) return print_results(k).astype(np.float32)