import os import gradio as gr from huggingface_hub import login, InferenceClient import spaces # Authenticate with Hugging Face API api_key = os.getenv("TOKEN") login(api_key) # Predefined list of models to compare (can be expanded) model_options = { "Llama-3.1-70B": "meta-llama/Llama-3.1-70B-Instruct", "Qwen-2.5-1.5B-Instruct": "Qwen/Qwen2.5-1.5B-Instruct", "Llama-3.2-1B": "meta-llama/Llama-3.2-1B", "DeepSeek-V2.5": "deepseek-ai/DeepSeek-V2.5", "Athene-V2-Chat": "Nexusflow/Athene-V2-Chat", } # Initialize clients for models clients = {name: InferenceClient(repo_id) for name, repo_id in model_options.items()} # Define the response function @spaces.GPU def respond( message, history: list[dict], system_message, max_tokens, temperature, top_p, selected_models, ): messages = [{"role": "system", "content": system_message}] + history messages.append({"role": "user", "content": message}) responses = {} # Generate responses for each selected model for model_name in selected_models: client = clients[model_name] response = "" for token in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p ): delta = token.choices[0].delta.content response += delta responses[model_name] = response return responses # Build Gradio app def create_demo(): with gr.Blocks() as demo: gr.Markdown("# AI Model Comparison Tool 🌟") gr.Markdown( """ Compare responses from two AI models side-by-side. Select two models, ask a question, and compare their responses in real time! """ ) # Input Section with gr.Row(): system_message = gr.Textbox( value="You are a helpful assistant providing answers for technical and customer support queries.", label="System message" ) user_message = gr.Textbox(label="Your question", placeholder="Type your question here...") with gr.Row(): max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" ) # Model Selection Section selected_models = gr.CheckboxGroup( choices=list(model_options.keys()), label="Select exactly two models to compare", value=["Llama-3.1-70B", "Qwen-2.5-1.5B-Instruct"], # Default models ) # Dynamic Response Section response_box1 = gr.Textbox(label="Response from Model 1", interactive=False) response_box2 = gr.Textbox(label="Response from Model 2", interactive=False) # Function to generate responses def generate_responses( message, system_message, max_tokens, temperature, top_p, selected_models ): if len(selected_models) != 2: return "Error: Please select exactly two models to compare.", "" responses = respond( message, [], system_message, max_tokens, temperature, top_p, selected_models ) return responses.get(selected_models[0], ""), responses.get(selected_models[1], "") # Add a button for generating responses submit_button = gr.Button("Generate Responses") submit_button.click( generate_responses, inputs=[user_message, system_message, max_tokens, temperature, top_p, selected_models], outputs=[response_box1, response_box2], # Link to response boxes ) return demo if __name__ == "__main__": demo = create_demo() demo.launch()