import gradio as gr import torch from transformers import ( AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig, ) import os from threading import Thread import spaces import time token = os.environ["HF_TOKEN"] quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16 ) model = AutoModelForCausalLM.from_pretrained( "meta-llama/Meta-Llama-3-8B-Instruct", quantization_config=quantization_config, token=token ) tok = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", token=token) terminators = [ tok.eos_token_id, tok.convert_tokens_to_ids("<|eot_id|>") ] if torch.cuda.is_available(): device = torch.device("cuda") print(f"Using GPU: {torch.cuda.get_device_name(device)}") else: device = torch.device("cpu") print("Using CPU") # model = model.to(device) # Dispatch Errors @spaces.GPU(duration=150) def chat(message, history, temperature,do_sample, max_tokens): start_time = time.time() chat = [] for item in history: chat.append({"role": "user", "content": item[0]}) if item[1] is not None: chat.append({"role": "assistant", "content": item[1]}) chat.append({"role": "user", "content": message}) messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) model_inputs = tok([messages], return_tensors="pt").to(device) streamer = TextIteratorStreamer( tok, timeout=10.0, skip_prompt=True, skip_special_tokens=True ) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, eos_token_id=terminators, ) if temperature == 0: generate_kwargs['do_sample'] = False t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() partial_text = "" first_token_time = None for new_text in streamer: if not first_token_time: first_token_time = time.time() - start_time partial_text += new_text yield partial_text total_time = time.time() - start_time tokens = len(tok.tokenize(partial_text)) tokens_per_second = tokens / total_time if total_time > 0 else 0 timing_info = f"\n\nTime taken to first token: {first_token_time:.2f} seconds\nTokens per second: {tokens_per_second:.2f}" yield partial_text + timing_info demo = gr.ChatInterface( fn=chat, examples=[["Write me a poem about Machine Learning."]], # multimodal=False, additional_inputs_accordion=gr.Accordion( label="⚙️ Parameters", open=False, render=False ), additional_inputs=[ gr.Slider( minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature", render=False ), gr.Checkbox(label="Sampling",value=True), gr.Slider( minimum=128, maximum=4096, step=1, value=512, label="Max new tokens", render=False, ), ], stop_btn="Stop Generation", title="Chat With LLMs", description="Now Running [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) in 4bit" ) demo.launch()