from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler from diffusers.utils import load_image from PIL import Image import torch import numpy as np import cv2 import gradio as gr from torchvision import transforms controlnet = ControlNetModel.from_pretrained( "briaai/BRIA-2.2-ControlNet-Depth", torch_dtype=torch.float16 ).to('cuda') pipe = StableDiffusionXLControlNetPipeline.from_pretrained( "briaai/BRIA-2.2", controlnet=controlnet, torch_dtype=torch.float16, device_map='auto', low_cpu_mem_usage=True, offload_state_dict=True, ).to('cuda') pipe.scheduler = EulerAncestralDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, steps_offset=1 ) # pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7) pipe.enable_xformers_memory_efficient_attention() pipe.force_zeros_for_empty_prompt = False from transformers import DPTFeatureExtractor, DPTForDepthEstimation depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda") feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas") def resize_image(image): image = image.convert('RGB') current_size = image.size if current_size[0] > current_size[1]: center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1])) else: center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0])) resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024)) return resized_image def get_depth_map(image): image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda") with torch.no_grad(), torch.autocast("cuda"): depth_map = depth_estimator(image).predicted_depth image = transforms.functional.center_crop(image, min(image.shape[-2:])) depth_map = torch.nn.functional.interpolate( depth_map.unsqueeze(1), size=(1024, 1024), mode="bicubic", align_corners=False, ) depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) depth_map = (depth_map - depth_min) / (depth_max - depth_min) image = torch.cat([depth_map] * 3, dim=1) image = image.permute(0, 2, 3, 1).cpu().numpy()[0] image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8)) return image def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed): generator = torch.manual_seed(seed) # resize input_image to 1024x1024 input_image = resize_image(input_image) depth_image = get_depth_map(input_image) images = pipe( prompt, negative_prompt=negative_prompt, image=depth_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale), generator=generator, ).images return [depth_image, images[0]] block = gr.Blocks().queue() with block: gr.Markdown("## BRIA 2.2 ControlNet Depth") gr.HTML('''
This is a demo for ControlNet Depth that using BRIA 2.2 text-to-image model as backbone. Trained on licensed data, BRIA 2.2 provide full legal liability coverage for copyright and privacy infringement.
''') with gr.Row(): with gr.Column(): input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam prompt = gr.Textbox(label="Prompt") negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers") num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1) controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05) seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,) run_button = gr.Button(value="Run") with gr.Column(): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto') ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed] run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) block.launch(debug = True)