import numpy as np import torch import torch.nn.functional as F from torchvision.transforms.functional import normalize import gradio as gr from gradio_imageslider import ImageSlider from briarmbg import BriaRMBG import PIL from PIL import Image from typing import Tuple net = BriaRMBG.from_pretrained("briaai/RMBG-1.4") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") net.to(device) net.eval() def resize_image(image): image = image.convert('RGB') model_input_size = (1024, 1024) image = image.resize(model_input_size, Image.BILINEAR) return image def process(image): # prepare input orig_image = Image.fromarray(image) w,h = orig_im_size = orig_image.size image = resize_image(orig_image) im_np = np.array(image) im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1) im_tensor = torch.unsqueeze(im_tensor,0) im_tensor = torch.divide(im_tensor,255.0) im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0]) if torch.cuda.is_available(): im_tensor=im_tensor.cuda() #inference result=net(im_tensor) # post process result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0) ma = torch.max(result) mi = torch.min(result) result = (result-mi)/(ma-mi) # image to pil result_array = (result*255).cpu().data.numpy().astype(np.uint8) pil_mask = Image.fromarray(np.squeeze(result_array)) # add the mask on the original image as alpha channel new_im = orig_image.copy() new_im.putalpha(pil_mask) return new_im # return [new_orig_image, new_im] gr.Markdown("## BRIA RMBG 1.4") gr.HTML('''

This is a demo for BRIA RMBG 1.4 that using BRIA RMBG-1.4 image matting model as backbone.

''') title = "Background Removal" description = r"""Background removal model developed by BRIA.AI, trained on a carefully selected dataset and is available as an open-source model for non-commercial use.
For test upload your image and wait. Read more at model card briaai/RMBG-1.4. To purchase a commercial license, simply click Here.
""" examples = [['./input.jpg'],] demo = gr.Interface(fn=process,inputs="image", outputs="image", examples=examples, title=title, description=description) if __name__ == "__main__": demo.launch(share=False)