import cv2 import numpy as np from PIL import Image import mediapipe as mp import time """ This code can not be run on HuggingFace's Spaces App due to constraints brought by Gradio's limited input and output functionality This features both more and less functions - Same "pen-holding" gesture to write, let go of the pen to lift off the "paper" - Open palm facing front gesture to save a copy of the paper to home directory - Thumbs up gesture to clear the page *** Install dependencies from requirements.txt *** packages.txt is device dependent """ def find_hands(brain, img): img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # opencv image is in BGR form but mp is trained with RGB results = brain.process(img_rgb) # process finds the hands and outputs classification and 21 landmarks for each hand hands_landmarks = [] # initializing array to hold the dictionary for the hands h, w, _ = img.shape # get height and width of image for scaling if results.multi_hand_landmarks: for hand_type, hand_lms in zip(results.multi_handedness, results.multi_hand_landmarks): # elegant solution for mp list object traversal hand = {} # initializing dict for each hand lm_list = [] # landmarks array for all 21 point of the hand for lm in hand_lms.landmark: px, py, pz = int(lm.x * w), int(lm.y * h), int(lm.z * w) # scaling landmark points to image size for frame coordinates lm_list.append([px, py, pz]) hand["lm_list"] = lm_list # add "lm_list" key for all landmark points of the hand hand["type"] = hand_type.classification[0].label # adds the label (left/right) for the hand hands_landmarks.append(hand) # appends the dict return hands_landmarks def is_drawing(index, thumb): # proximity function with arbitrary threshold npindex = np.array((index[0], index[1])) npthumb = np.array((thumb[0], thumb[1])) if np.linalg.norm(npindex - npthumb) < 30: return True else: return False def save(landmarks): # brute force finger orientation checking if landmarks[8][1] < landmarks[6][1]: if landmarks[12][1] < landmarks[10][1]: if landmarks[16][1] < landmarks[14][1]: if landmarks[20][1] < landmarks[18][1]: return True else: return False def clear(landmarks): # brute force finger orientation checking if landmarks[4][1] < landmarks[3][1] < landmarks[2][1] < landmarks[8][1]: return True else: return False DOMINANT_HAND = "Right" width, height = 1280, 720 width_, height_, = 256, 144 drawing_flag = False sleepy_time = time.time() if __name__ == '__main__': cam = cv2.VideoCapture(0) cam.set(3, width) cam.set(4, height) detector = mp.solutions.hands.Hands(min_detection_confidence=0.8) # initialize mp model # paper = np.zeros((width, height, 4), np.uint8) paper = np.zeros((height, width, 3), dtype=np.uint8) # create blank page paper.fill(255) past_holder = () # coordinates holder palette = cv2.imread('palette.jpg') output_frames = [] page_num = 0 # runny = 1 color = (0, 0, 0) while True: # runny -= 1 x, rgb_image = cam.read() rgb_image_f = cv2.flip(np.asanyarray(rgb_image), 1) hands = find_hands(detector, rgb_image_f) try: if hands: hand1 = hands[0] if hands[0]["type"] == DOMINANT_HAND else hands[1] lm_list1 = hand1["lm_list"] # List of 21 Landmarks handedness = hand1["type"] if handedness == DOMINANT_HAND: idx_coords = lm_list1[8][0], lm_list1[8][1] # 0 is width (bigger) # print(idx_coords) cv2.circle(rgb_image_f, idx_coords, 5, color, cv2.FILLED) if idx_coords[1] < 72: # brute force but should be extremely marginally faster lol if idx_coords[0] < 142: # red color = (0, 0, 255) if 142 < idx_coords[0] < 285: # orange color = (0, 115, 255) if 285 < idx_coords[0] < 426: # yellow color = (0, 229, 255) if 426 < idx_coords[0] < 569: # green color = (0, 195, 88) if 569 < idx_coords[0] < 711: # blue color = (195, 85, 0) if 711 < idx_coords[0] < 853: # indigo color = (195, 0, 68) if 853 < idx_coords[0] < 996: # violet color = (195, 0, 143) if 996 < idx_coords[0] < 1137: # black color = (0, 0, 0) if 1137 < idx_coords[0]: # white / eraser color = (255, 255, 255) if len(past_holder) and drawing_flag: # start drawing cv2.line(paper, past_holder, idx_coords, color, 5) cv2.line(rgb_image_f, past_holder, idx_coords, color, 5) # paper[idx_coords[0]][idx_coords[1]][0] = 255 # paper[idx_coords[0]][idx_coords[1]][3] = 255 cv2.circle(rgb_image_f, idx_coords, 5, color, cv2.FILLED) if save(lm_list1) and time.time() - sleepy_time > 3: # save page, 3 secs arbitrary, just to not iterate every loop iteration paper[0:height_, w - width_: w] = 255 paper = cv2.cvtColor(paper, cv2.COLOR_BGR2RGB) im = Image.fromarray(paper) im.save("paper%s.png" % page_num) print("saved") sleepy_time = time.time() paper = cv2.cvtColor(paper, cv2.COLOR_RGB2BGR) page_num += 1 if clear(lm_list1) and time.time() - sleepy_time > 3: # clear page paper = np.zeros((height, width, 3), dtype=np.uint8) paper.fill(255) print("page cleared") sleepy_time = time.time() past_holder = idx_coords if is_drawing(idx_coords, lm_list1[4]): # 4 is thumb for intuitive "hold pen" to draw drawing_flag = True else: drawing_flag = False except: pass finally: rgb_image_f[0:72, ] = palette presenter = cv2.resize(rgb_image_f, (width_, height_)) h, w, _ = rgb_image_f.shape paper[0:height_, w - width_: w] = presenter cv2.imshow("Image", rgb_image_f) cv2.imshow("paper", paper) key = cv2.waitKey(1) if key & 0xFF == ord('q') or key == 27: # Press esc or 'q' to close the image window break