import pandas as pd
import streamlit as st
import pybase64 as base64
import io
from logs_portal import log
import os
from datetime import date
from modules import tables
import boto3
from Data.credentials import credentials_s3 as creds3
from streamlit_echarts import st_echarts
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode, JsCode
import numpy as np
from streamlit_lottie import st_lottie
import json
def generador_variable_pond(name, col_s1):
col_s1.markdown("""
{Var}
""".format(Var=name),
unsafe_allow_html=True)
def button_style():
style_button = """
"""
st.markdown(style_button, unsafe_allow_html=True)
def get_table_excel_link(df, name):
towrite = io.BytesIO()
writer = pd.ExcelWriter(towrite, engine='xlsxwriter')
downloaded_file = df.to_excel(writer, encoding='utf-8', index=False,
header=True)
workbook = writer.book
worksheet = writer.sheets["Sheet1"]
#set the column width as per your requirement
worksheet.set_column('A:BZ', 18)
writer.save()
towrite.seek(0) # reset pointer
file_name = 'Scoring.xlsx'
style = 'style="color:black;text-decoration: none; font-size:18px;" '
name_mark = name
b64 = base64.b64encode(towrite.read()).decode() # some strings
linko = f''+name_mark+' '
return linko
def read_excel_s3(key, secret_key, bucket, path):
s3_client = boto3.client('s3', aws_access_key_id = key, aws_secret_access_key= secret_key)
response = s3_client.get_object(Bucket=bucket, Key=path)
data = response["Body"].read()
df = pd.read_excel(io.BytesIO(data), engine='openpyxl')
return df
def display_table(df: pd.DataFrame, name):
# Configure AgGrid options
gb = GridOptionsBuilder.from_dataframe(df)
gb.configure_selection(selection_mode="multiple", use_checkbox=True,)
gb.configure_column(name, headerCheckboxSelection = True)
gb.configure_columns(("TICKER", "COUNTRY", "LV1"), pinned=True)
return AgGrid(
df, gridOptions=gb.build(),
update_mode=GridUpdateMode.SELECTION_CHANGED,
enable_enterprise_modules=True)
@st.experimental_memo
def read_scoring():
key = creds3["S3_KEY_ID"]
secret_key = creds3["S3_SECRET_KEY"]
bucket = creds3["S3_BUCKET"]
path ="scoring.xlsx"
scoring = read_excel_s3(key, secret_key, bucket, path)
return scoring
# @log
def general():
with open("Data/lotties/99268-laading-22.json", "r") as f:
spinner = json.load(f)
cols1, cols2= st.sidebar.columns((3,1))
place = cols2.empty()
with place:
st_lottie(spinner)
# scoring.index = scoring['Ticker']
button_style()
scoring_completo = read_scoring()
col1, col2, col3 = st.columns((4,1,1))
col1.write("Last Update: " + scoring_completo.iloc[0]["TODAY"])
col1.write("Valores en MM USD")
place1=col2.empty()
place2 =col3.empty()
scoring_completo = scoring_completo.drop(columns=["TODAY"])
scoring_completo[["Nota", 'W Latino', "W Small", 'Nota ESG']] = scoring_completo[["Nota", "W Latino", 'W Small', 'Nota ESG']].fillna(0)
scoring = scoring_completo.copy()
# convert just columns "a" and "b"
metrics = ['MOMENTUM Precio', 'MOMENTUM Fundamental',
'VALUE','PROF', 'Distres_Prom', 'PROF', 'Delta 1M', 'QUALITY', 'Nota ESG']
metrics2 = ['Market_Cap'] + metrics
scoring[metrics2] = scoring[metrics2].round()
scoring[["W Latino", "W Small", "BM Latino", "BM Small"]] = scoring[["W Latino", "W Small", "BM Latino", "BM Small"]] * 100
scoring[["W Latino", "W Small", "BM Latino", "BM Small"]] = scoring[["W Latino", "W Small", "BM Latino", "BM Small"]].round(2).fillna(0)
metrics_aggrid = ['Ticker', 'Portfolio_Country', 'LV1', 'Market_Cap',
'ADTV','Large/Small', 'Delta 1M','Distres_Prom', 'MOMENTUM Precio', 'MOMENTUM Fundamental',
'VALUE','PROF', 'QUALITY', 'Score', "Nota",
'Nota ESG', 'Stop Loss', "W Latino", "W Small", "BM Latino","BM Small"]
scoring = scoring[metrics_aggrid]
scoring[metrics_aggrid] = scoring[metrics_aggrid].replace(np.nan, -1)
metrics3 = ['TICKER', 'COUNTRY', 'LV1', 'MKT CAP', 'ADTV', 'L/S', 'Δ 1M',
'DISTRES', 'MOM PREC',
'MOM FUND', 'VALUE','PROF', 'QUALITY', 'SCORE',
"NOTA", 'ESG', 'STOP LOSS', "W LAT", "W SMALL", "BM LAT", "BM SMALL"]
metrics4 = [
'MOM PREC', 'MOM FUND', 'VALUE', 'QUALITY','DISTRES', 'PROF']
scoring.columns = metrics3
button = st.button("Refresh")
r = display_table(scoring, 'TICKER')
rad = 'Home'
if button:
st.experimental_memo.clear()
st.experimental_rerun()
with place1:
link = get_table_excel_link(scoring_completo, "Scoring completo")
st.markdown(link, unsafe_allow_html=True)
with place2:
link2 = get_table_excel_link(scoring, "Scoring resumen")
st.markdown(link2, unsafe_allow_html=True)
w_lat = []
w_small = []
bm_lat = []
bm_small = []
col1, col2, col3, col4, col5 = st.columns((1,1,1,1,3))
large = col1.checkbox("LUXMEXEQ", True)
small = col2.checkbox("LUXLATSML", True)
m1la = col3.checkbox("M1LA")
msm = col4.checkbox("MSLUELAN")
if "large" not in st.session_state:
st.session_state.large=False
if "small" not in st.session_state:
st.session_state.small=False
if "bm_sm" not in st.session_state:
st.session_state.bm_sm=False
if "bm_lat" not in st.session_state:
st.session_state.bm_lat=False
if large:
st.session_state.large = True
else:
st.session_state.large = False
if small:
st.session_state.small =True
else:
st.session_state.small = False
if m1la:
st.session_state.bm_lat = True
else:
st.session_state.bm_lat = False
if msm:
st.session_state.bm_sm =True
else:
st.session_state.bm_sm = False
col1, col2, col3 = st.columns((2.5, 1, 1))
try:
series_data = []
names=[]
for metric in metrics4:
w_lat.append((scoring[metric]*scoring["W LAT"]/100).sum())
w_small.append((scoring[metric]*scoring["W SMALL"]/100).sum())
bm_lat.append((scoring[metric]*scoring["BM LAT"]/100).sum())
bm_small.append((scoring[metric]*scoring["BM SMALL"]/100).sum())
if st.session_state.large:
series_data.append({"value":w_lat,
"name": "LUXMEXEQ"})
names.append("LUXMEXEQ")
if st.session_state.small:
series_data.append({"value":w_small,
"name": "LUXLATSML"})
names.append("LUXLATSML")
if st.session_state.bm_lat:
series_data.append({"value":bm_lat,
"name": "M1LA"})
names.append("M1LA")
if st.session_state.bm_sm:
series_data.append({"value":bm_small,
"name": "MSLUELAN"})
names.append("MSLUELAN")
if len(r['selected_rows'])>0:
for emp in r['selected_rows']:
selected = emp.copy()
name = selected['TICKER']
names.append(name)
indicators = []
series_value = []
for met in metrics4:
indicators.append({'name': met, "max": 100})
series_value.append(selected[met])
series_data.append({"value": series_value,
"name": name})
with col2:
st.metric('SCORE PROMEDIO - ' + name,
int(np.array(series_value).mean()))
else:
indicators = []
for met in metrics4:
indicators.append({'name': met, "max": 100})
option = {
"title": {"text": 'Score'},
"legend": {"data": names},
"radar": {
"indicator": indicators
},
"series": [
{
"name": "",
"type": "radar",
"data": series_data,
}
],
}
with col1:
st_echarts(option, height="400px", width="80%")
except Exception as exc:
st.write(exc)
pass
# st.image("img/Scoring.png", width="100%")
place.empty()
def diagrama():
import pandas as pd
import pandas_profiling
import streamlit as st
from streamlit_pandas_profiling import st_profile_report
st.image("img/Scoring.png")
df = read_scoring()
df=df[['MOMENTUM Precio','MOMENTUM Fundamental', 'VALUE','QUALITY', 'PROF','Distres_Prom','Score' ]]
pr = df.profile_report()
st_profile_report(pr)