''' import streamlit as st from transformers import pipeline pipe = pipeline('sentiment-analysis') text = ('enter some text:') if text: out = pipe(text) st.json(out) ''' from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_name = "abacusai/Smaug-72B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Encode some input text input_text = "Who are you?" input_ids = tokenizer.encode(input_text, return_tensors='pt') # Generate text using the model output = model.generate(input_ids, max_length=50) # Decode and print the output print("Decoded output: " + tokenizer.decode(output[0], skip_special_tokens=True))